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Supervised learning: framework

Setting
e Data D, = {(X;,Y;):i=1,...,n} supposed to be i.i.d.
e ;e X=RP, Y;eYfori=1,...,n The X; are called
features and the Y; are called labels.
e The labels are scalar numbers. We assume that ) C R.
Y = R for regression, ) = {—1,+1} for binary classification.
High-dimension
e pis larger, (say p > 10%)
Big data
e nis larger, (say n > 10°)
Goal
e Based on (xj, y;), learn a function that predicts y based on a
new x (generalization property).
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Supervised learning: empirical risk + penalization

Minimize with respect to f : RP — R
RA(f) + Apen(f)

where

Ralf) = =3ty 7(x)
i=1

is an empirical risk, where £ is a loss function.

e pen is a penalization function, that encodes a prior
assumption on f.

e )\ > 0 is a tuning parameter, that balances good-of-fitness

and penalization.
e Simplification: choose a linear function f:

p
Fx)=x"0="> xb;
j=1

for a parameter 6 € RP to be trained.
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Supervised learning: empirical risk + penalization

e We end up with:

0 € argmin{R,(#) + Apen(h)},
OeRP

where

1 n
R”(e) = ; Ze(yhxi—re)
i=1

and pen(6) is a penalization on .

e Choice of penalization !
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Supervised learning: Lasso penalization and its derivatives

e lg-quasi-norm: pen(f) = [|0|lo = #{j : 6; # 0}.
e Lasso (¢1-norm): pen(6) = |01 = f:l |6;| [Tibshirani
(1996)].

e Elastic-Net ((¢1 + £3)-norm): pen(6) = ||0]|1 + ||0]|3 [Zou and
Hastie (2005)].

e Fused Lasso (¢1 + TV): pen(0) = ||0]|1 + ||@||Tv [Tibshirani et
al. (2005)] where || - ||Tv is the (discrete) total-variation
penalization (TV) defined as

p
16l = 16 — 8], for all § € RP.
j=2
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Motivations for using TV

e Appropriate for multiple change-points estimation.
— Partitioning a nonstationary signal into several contiguous
stationary segments of variable duration [Harchaoui and
Lévy-Leduc (2010)].

e Widely used in sparse signal processing and imaging (2D)
[Chambolle et al. (2010)].

e Enforces sparsity in the discrete gradient, which is desirable
for applications with features ordered in some meaningful way
[Tibshirani et al. (2005)].
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oy example: recovery of piecewise constant signal using

signal + noise

index
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Weighted TV

e For a chosen positive vector of weights &, we define the
weighted TV by

10llTv.e = ZWJW 01l
e If & =1, then we get the simple (unweighted) TV by

p
100rv,e = 16llrv = 16; — 0]
j=2
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Proximal operator of weighted TV penalization

e We are interested in computing a solution
0 = argmin{g(0) + h(6)},
0

where g is smooth and h is simple (prox-calculable).

e The proximal operator prox, of a proper, lower
semi-continuous, convex function h: R" — (—o0, o0}, is
defined as

1
prox,(y) = argmin {*Hy — 0|15 + h(9)}, for all y € R".
gern (2
e Proximal gradient descent (PGD) algorithm is based on

pt+1) — prox., , (O(t) — nth(O(t))).

[ISTA Daubechies et al. (2004), FISTA Beck and Teboulle (2009)]
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Proximal operator of weighted TV penalization

We have

R o1
0 = prox|. |, . (v) = argmin {5” Y - 0|5+ H9||Tv,w}‘
’ OeR"

Modification of Condat’s algorithm [Condat (2013)].

If we have a feasible dual variable &I, we can compute the
primal solution 8, by Fenchel duality.

The Karush-Kuhn-Tucker (KKT) optimality conditions
characterize the unique solutions 0 and .
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4.

6.

9.

Algorithm 1: 0 = ProX|. |17y » (V)

set k = kg = k— = ky <+ 1; Opin <= y1 — @2; Omax < Y1 + ©2; Upmin < ©2; Umax < —@2;

if k = n then

L 00« Omin + timin:
if Vi1 + Umin < Omin — @42 then

ko

= =0k <« Onini k=ky =k =k + k_ +1;

/* negative jump */

Omin = Yk — @kp1 + @k; Omax = Vi + Okr1 + Dk Umin < Dht1i Umax < —Dkt1s

else if yj 1 + Umax > Omax + ©i42 then
Okg = -+ = Ok, + Omaci k= ko = k_ = ki + k +1;
Omin = Yk — Qk41 — @k Omax = Vi + Qpp1 — @k Umin = Dpt1; Umax < —Dkt1;

else

set k «— k + 1; tmin <= Yk + @k41 — Omini Umax = Yk — @k+1 — Omax;
if Umin > @y then

Umin = Pk41

Omin < Omin + Th—Rotl ¢ Umin < Dkp1i k— ki

if Umax < —@qq then

Umax+ @41

Omax < Omax + W; Umax = —@kt1i ky < k;

if k < n then
[ goto3.;

if Umin < 0 then

Ok

Umin <

Qk41s Umax < Yk + @k — Vmax; g0 to 2.;

= =0k < Omini k= ko = ko 4= k_ +1; Omin < Yk — Dpey1 + Dis

else if umax > 0 then
éko :~~:ék+  Omax; k= ko = ki <+ ki +1; Omax <+ Yk + @pr1 — @k;
Umax 4= —@k41i Umin = Yk — @k — Umin; 80 t0 2.

else
ék():"':énhemin"'%énﬂ;
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/* positive jump */

/* no jump */
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Features binarization

e Supervised training dataset (x;, yi)i=1,..» containing features
Xi = (Xi1,---,%p) €RPand labels y; € Y C R, that are
i.i.d.

e We denote X = [x;j|i<i<ni1<j<p the n x p features matrix.

e Let X, be the j-th feature column of X.

e The binarized matrix X& is a matrix with an extended
number d > p of columns (only binary).

e The j-th column X, ; is replaced by a number d; > 2 of

columns X?’Ll, e =X5j,dj containing only zeros and ones.
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Features binarization: setup

e If X, takes values (modalities) in the set {1,..., M;} with
cardinality M;, we take d; = M;, and use a binary coding of
each modality by defining

X-B- . 17 ifX,"J':k,
ok 0, otherwise,

e If X, is quantitative, then d; we consider a partition of
intervals j1, ..., l; 4 for the range of values of X, ; and define

B 1, ifX,'JG/j,k,
ok 0, otherwise,

e The i-th raw of X& is written

_ (B B B B B B \T d
i = (Xi,1,17~~-7Xi,1,d17Xi,2,13"'in,Z,dzv'"’Xi,p,lﬁ"wxi,p,dp) eR
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Features binarization: setup

A natural choice of intervals is given by the quantiles, namely
i o= (g:( k=LY g (K

we can typically choose /; , = (qj( 7 ), qJ(_dj)] for

k =1,...,d;, where gj(cv) denotes a quantile of order

a € [0,1] for X, .

To each binarized feature X.B’Lk corresponds a parameter 0; ;.

The parameters associated to the binarization of the j-th
feature is denoted 0 4 = (61 - -- 9j7dj)T.

The full parameters vector of size d = Zf:l d;, is simply

QZ(QI....9;’.)T:(9171...9170,192’1 Oy Opa "'9p,d,,)
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Features binarization

e The one-hot-encodings satisfy ZZJ':I X;jk=1forall}j,
meaning that the columns of each block sum to 1,.
— XB is not of full rank by construction.

e Some of the raw features X, j might not be relevant for the
prediction task, so we want to select raw features from their
one-hot encodings,

— block-sparsity in 6.

e In our penalization term, we impose Zk 19,k =0 for all
Jj=1,...,p (sum-to-zero-constraint).

o We remark that within each block, binary features are ordered.
— We use a within block weighted total-variation penalization

P dj
D NGelltves. =Y @jkl0jk — 051l
j=1 k=2
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e We therefore introduce the following new penalization called
binarsity

p

bina(# Z (Zw, k|0jk — 0 k-1 +51(9j,-))»

j=1
where the indicator function

0 if 1Tu=0,
(51(u):{ i

oo  otherwise.

e If a raw feature j is statistically not relevant for predicting the
labels, then the full block 6;  should be zero.

o If a raw feature J is relevant, then the number of different
values for the coefficients of 8; , should be kept as small as
possible, in order to balance bias and variance.
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Toy example (n = 1000, p = 2, d; = d» = 100)

Raw features

Raw features

o

Raw features
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Weights in Binarsity

We consider the following data-driven weighted version of Binarsity

given by
. log d .
wJ',k:O< n 7Tj,k>7
where
A #({izl,...,n:x,-JE(qj(dﬁj),qj(l)]}>
Wj,k — .

n

7 k corresponds to the proportion of 1s in the sub-matrix obtained
by deleting the first k columns in the j-th binarized block matrix.
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Generalized linear models

e The conditional distribution of Y; given X; = x; is assumed to
be from one parameter exponential family

ylx = FO(y[x) = exp

(o0 M) )

e The functions b(-) and ¢(-) are known, while the natural
parameter function m°(x) is unknown.

e We have
mo(x) = g(E[Y;|X; = x;]), where b' = g_l.

e Logistic and probit regression for binary data or multinomial
regression for categorical data, Poisson regression for count
data, etc ...

Mokhtar Z. Alaya LumenAi, 20th September 2018 Binarsity



Generalized linear models + binarsity

e We consider the empirical risk
1 n

Rn 0) =— 14 iy i))s

()= 5 3 i)

where mp(x;) = 607 x5.

e [ is the generalized linear model loss function and is given by
Uy, y") = —yy' +b(y").

e Our estimator of m° is given by m = mg, where 0 is the
solution of the penalized log-likelihood problem

0 € argmin { R(0) + bina(0)}.
OeRr?
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Fast oracle inequality in GLM with binarsity scenario

Assumption

Assume that b is three times continuously differentiable, and that there
exist constants C, > 0, and 0 < L, < U, such that
Cy = maxi—1, o |m°(x)| < 0o and L, < max;—1__n b”(mo(x,-)) < U,.

For all § € RY, let J(0) = [J1(0), ..., Jp(6)] be the concatenation of the
support sets relative to the total-variation penalization, that is

9) = {k : Gjyk 75 9j7k71, for k = 27,dj}

Assumption

Let K = [Ka, ..., K,] be a concatenation of index sets. Assume

: [ Xull2
k(K inf >0
( ) uE@Tv, o (K)\{04} { \/>||UK||2

with 6rv o) = {u € B 22 1w0) o lmv,zy,e < 250, 100 lrv.cy , |-
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Fast oracle inequality in GLM with binarsity scenario

To evaluate the quality of the estimation, we shall use the excess
risk of m,

R() — R(m°(X)) = Eg(yx)[Ra() — Ra(m°)].

Theorem 3

With a high probability, any solution 0 of the penalized problem restricted
on By(p) fulfills the following risk bound

R(ms) — R(m®) < (14C) _inf {R(mg)—R(m‘J)

0€By(p)
&)
T K/Q(J(G)) max ||(wj, )J(9 ||§o}a

where By(p) = {6 € RY : ||0]|2 < p}, ¢ = Cst(Cp, p, p, Ly, Up) << 1 and
g = CSf(Cn,p,p, Lna Un)
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Illustration of the binarsity penalty on the “Churn” dataset.
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Proximal algorithm of weighted binarsity

e Since Binarsity is separable by blocks, we have
( ProXpina (9))1-’. = PfOX(H.”TV,@j’.MI)(91',-),

forall j=1,...,p.
e Algorithm 2 expresses proxy;,, based on the proximal operator
of the weighted TV penalization.

Algorithm 2:
Input: vector 6 € R? and weights Wj for j=1,...,pand
k=1,...,d;

Output: vector 7 = proxyin, (6)
for j =1 to p do
Bje < ProX|j; llrv.o. (0j.6) (TV-weighted prox in block j)
olltvee; .
Nje ¢ Bijo— = sz,l Bk (within-block centering)
[ 2ak=

Return: 7
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Dataset n p

lonosphere 351 34
Churn 3333 21
Default of credit card 30000 24
Adult 32561 14
Bank marketing 45211 17
Covertype 550088 10
SUSY 5000000 18
HEPMASS 10500000 28
HIGGS 11000000 24

[Source: UCI Machine Learning Repository
(https://archive.ics.uci.edu/ml/datasets/)]

Mokhtar Z. Alaya LumenAi, 20th September 2018 Binarsity



Real data

lonosphere Churn Default of credit card

0.6

o L [— Binarsity (0.976) o — Binarsity (0.892) o — Binarsity (0.774)
— RF(0.980) — RF(0.924) — RF(0.780)
02 GB (0.974) 02 GB (0.922) B GB (0.778)
— SVM(0.975) — SVM(0.913) — SVM(0.760)
—  Lasso (0.904) — Lasso (0.849) — Lasso (0.770)
9% 0.2 0.4 0.6 08 o "% 0.2 04 0.6 05 1.0 0.2 04 0.6 0.8 1.0

Adult

Bank marketing

Covertype

0.8

0.6 0.6

04 — Binarsity (0.910) o " [— Binarsity (0.909) o
— RF(0.916) — RF(0.934) . Binarsity (0.822)
0o g GB (0.925) 0 GB (0.932) - — RF(0.863)
—  SVM (0.905) —  SVM (0.906) GB (0.881)
"' —— Lasso (0.901) L —— Lasso (0.907) —— Lasso (0.663)
R0 02 [ 0.6 0.5 o 0o 02 0.1 0.6 0.8 Lo 0.2 04 0.6 08 10
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susy

HEPMASS

HIGGS

0.6

0.4

Binarsity (0.855)
RF (0.860)

GB (0.862)
Lasso (0.843)

Binarsity (0.963)
RF (0.965)

GB (0.966)
Lasso (0.959)

Binarsity (0.768)

RF (0.820)
GB (0.811)

~—— Lasso (0.679)

0.6 0.8

02

0.1 0.6 0.8 10

Python library "tick” [Gaiffas et al. (2017)]
(https://x-datainitiative.github.io/tick/)
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Computing time comparisons

10°
< 10
c
o E
g 10°
K
8 10
§ 10! I Binarsity
2 == GB
é_ 109 [ Lasso
£ B RF
S 107! I SVM
1072
S S
S &
¥ G
g 9
s

Datasets

Computing time comparisons (in seconds) between the methods on the
considered datasets
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Take Home Message

e We introduce a data-driven weighted TV penalization for two
problems: estiamtion of intsity of a counting process and
GLM with binarized features.

e For each procedure, we give: theoretical guaranties via
non-asymptotic oracles inequalities for the prediction error and
algorithms that efficiently solve the studied convex problems.
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