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joint work with Stéphane Gäıffas2 and Agathe Guilloux1

Mokhtar Zahdi Alaya1

24 mars 2015

1LSTA – UPMC
2CMAP – Ecole Polytechnique



Plan



Plan



Counting process: definitions

N = {N(t)}0≤t≤1 is a counting process if:

N(0) = 0 and N(t) <∞, a.s.,
N is an increasing, right-continuous function a.s.,

∆N(t) = N(t)− N(t−) ∈ {0, 1}.



Counting process: definitions

Doob-Meyer decomposition:

N(t) = Λ0(t)︸ ︷︷ ︸
compensator

+ M(t),︸ ︷︷ ︸
loc. integrable martingale

0 ≤ t ≤ 1.

Λ0(t) = E[N(t)] =
∫ t

0 λ0(s)ds.

The intensity of N is defined as follows:

λ0(t)dt = P[N has a jump in [t, t + dt)|F(t−)].



Sparse segmentation assumption

Assumption 1

λ0(t) =
L0∑
`=1

β0,`1(τ0,`−1,τ0,`](t), 0 ≤ t ≤ 1,

Parameters to be estimated:

{τ0,` : 1 ≤ ` ≤ L0}: the set of the true change-points,
{β0,` : 1 ≤ ` ≤ L0}: the set of the coefficients of the intensity λ0,
L0 : the number of the true the change-points.



Motivations of the sparse segmentation assumption

Signal processing: Segmentation of the audio signals.

Time series analysis.

Study of the genomic profiles: RNA-seq.

RNA-seq can be modelled mathematically as replications of an
inhomogeneous counting process with a piecewise constant
intensity (Shen, Zhang (2012)).



Assumption on the observations

The assumption that the process is in [0, 1] is for the sake of
simplicity.

Assumption 2

We observe n i.i.d copies of N on [0, 1], denoted N1, . . . ,Nn.

We define N̄n(I ) = 1
n

∑n
i=1 Ni (I ), Ni (I ) =

∫
I dNi (t), for all

subinterval I of [0, 1].

Assumption 2 is equivalent to observing a single process N with
intensity nλ0.
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A procedure based on total-variation penalization

We introduce the least-squares functional

Rn(λ) =

∫ 1

0
λ(t)2dt − 2

n

n∑
i=1

∫ 1

0
λ(t)dNi (t).

Fix m = mn ≥ 1, an integer that shall go to infinity as n→∞.

We approximate λ0 in the set of nonnegative piecewise constant
functions on [0, 1] given by

Λm =
{
λβ =

m∑
j=1

βj ,mλj ,m : β = [βj ,m]1≤j≤m ∈ Rm
+

}
,

where

λj ,m =
√
m1Ij,m et Ij ,m =

( j − 1

m
,
j

m

]
.

We consider the estimator

β̂ = argmin
β∈Rm

+

{
Rn(λβ) + ‖β‖TV,ŵ

}
.



A procedure based on total-variation penalization

The weighted total-variation penalty is given by:

Data-driven total-variation norm

‖β‖TV,ŵ =
m∑
j=2

ŵj |βj − βj−1|.

[ŵj ]1≤j≤m, where ŵ1 = 0, and ŵj ≥ 0, controls the sparsity of
the successive difference of the vector β.

The estimator of λ0 is defined as follows:

λ̂ = λβ̂ =
m∑
j=1

β̂j ,mλj ,m.
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Data-driven weights

Fix x > 0, and introduce the data-driven weights,

Data-driven weights

ŵj = 5.66

√
m(x + logm + ĥn,x,j)V̂j

n
+ 9.31

√
m(x + 1 + logm + ĥn,x,j)

n
.

V̂j = N̄n

(( j−1
m , 1

])
.

ĥn,x,j = 2 log log
(

6enV̂j+14e(x+log m)
28(x+log m) ∨ e

)
: a technique term given

by the Bernstein inequality (Gäıffas, Guilloux (2012)).

In practical, we consider the dominant term of the data-driven
weights

ŵj ≈
√

m logm

n
N̄n

(( j − 1

m
, 1
])
.



Oracle inequality with slow rate: general case

The linear space Λm is endowed by the norm
‖λ‖ = (

∫ 1
0 λ

2(t)dt)1/2.

We consider the general case of any intensity function of a
counting process.

The estimator λ̂ satisfies the following:

Theorem 1 [A., Gäıffas, Guilloux (2014)]

Fix x > 0 and let the data-driven weights ŵ defined as above.
Then, we have

‖λ̂− λ0‖2 ≤ inf
β∈Rm

+

(
‖λβ − λ0‖2 + 2‖β‖TV,ŵ

)
with a probability larger than 1− 12.85e−x .



Oracle inequality with fast rate: under Assumption 1

Let Ŝ : the support of the discrete gradient of β̂,

Ŝ =
{
j : β̂j ,m 6= β̂j−1,m pour j = 2, . . . ,m

}
.

Let L̂ : the estimated number of change-points defined by:
L̂ = |Ŝ |.

Theorem 2 [A., Gäıffas, Guilloux (2014)]

Fix x > 0, let λ̂ be the same as in Theorem 1. Assume that L̂ satisfies
L̂ ≤ Lmax. Then, we have

‖λ̂− λ0‖2 ≤ inf
β∈Rm

+

∥∥λβ − λ0

∥∥2
+ 6(Lmax + 2(L0 − 1)) max

1≤j≤m
ŵ2
j

+ K1

‖λ0‖∞
(
x + Lmax(1 + logm)

)
n

+ K2

m
(
x + Lmax(1 + logm)

)2

n2
,

with a probability larger than 1− Lmaxe
−x , with

‖λ0‖∞ = supt∈[0,1] λ0(t), K1 = 1670.89, and K2 = 6683.53.



Oracle inequality with fast rate: under Assumption 1

let β0,m = [β0,j ,m]1≤j≤m the coefficients vector of the projection
of λ0 on Λm, and ∆β,max = max1≤`,`′≤L0 |β0,` − β0,`′ |.

Lemma: Control of the bias

Given Assumption 1, we have

‖λβ − λ0‖2 ≤
2(L0 − 1)∆2

β,max

m
.

Theorem 2 proves that our procedure has a fast rate of
convergence of order (Lmax∨L0)m log m

n .

A consequence is that an optimal tradeoff between
approximation and complexity is given by the choice m ≈ n1/2.

If Lmax = O(m)⇒ m ≈ n1/3.

If Lmax = O(1)⇒ m ≈ n1/2.

We are able to use the same procedure in Theorems 1 and 2,
while it is not the case in the signal + white noise considered
(Harchaoui and Levy Leduc (2010)).
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Change-point detection: consistency

The approximate change-points sequence [j`]0≤`≤L0 is defined as
the right-hand side boundary of the unique interval Ij`,m that
contains the change-point τ0,`.

τ0,` ∈
(
j`−1
m , j`m

]
, for ` = 1, . . . , L0 − 1, where j0 = 0 and

jL0 = m by convention.

t

τ0,`−1 τ0,` τ0,`+1

Ij`−1,m Ij`,m Ij`+1,m

τ̂`

Let Ŝ = {ĵ1, . . . , ĵL̂} with ĵ1 < · · · < ĵL̂ of the support of the

discrete gradient of β̂.

We introduce ĵ0 = 0 and ĵL̂+1 = m, we define simply τ̂` = ĵ`
m for

` = 0, . . . , L̂ + 1.



Change-point detection: consistency

We will not be able to recover the exact position of two
change-points if they lie on the same interval Ij ,m.

Assumption 3

Grant Assumption 1 and assume that there is a positive constant c ≥ 8
such that

min
1≤`≤L0

|τ0,` − τ0,`−1| >
c

m
,

−→ The change-points of λ0 are sufficiently far apart.
−→ There cannot be more than one change-point in the
“high-resolution” intervals Ij ,m.

The procedure will be able to recover the (unique) intervals
Ij`,m, for ` = 0, . . . , L0, where the change-point belongs.



Change-point detection: consistency

∆j ,min = min
1≤`≤L0−1

|j`+1 − j`|, the minimum distance between

two consecutive terms in the change-points of λ0.

∆β,min = min
1≤q≤m−1

|β0,q+1,m − β0,q,m|, the smallest jump size of

the projection λ0,m of λ0 onto Λm.

(εn)n≥1, a non-increasing and positive sequence that goes to
zero as n→∞, and such that mεn ≥ 6 for any n ≥ 1.

Assumption 4

We assume that ∆j,min, ∆β,min and (εn)n≥1 satisfy

√
nmεn∆β,min√

logm
→∞ and

√
n∆j,min∆β,min√

m logm
→∞, as n→∞.



Change-point detection: consistency

Assumption 4 controls the rate (εn) of convergence of τ̂`
towards τ0,`.

Theorem 3 [A., Gäıffas, Guilloux (2014)]

Under Assumptions 3 and 4, and if L̂ = L0 − 1, then the change-points
estimators {τ̂1, . . . , τ̂L̂} satisfy

P
[

max
1≤`≤L0−1

|τ̂` − τ0,`| ≤ εn
]
→ 1, as n→∞.

If m = n1/3, Theorem 3 holds with εn = n−1/3,∆β,min = n−1/6

et ∆j ,min ≥ 6.

m = n1/2, Theorem 3 holds with εn = n−1/2,∆β,min = n−1/6 et
∆j ,min ≥ 6.



Change-point detection: consistency

We evaluate a non-symmetrized Hausdorff distance E(T̂ ‖T0)
between:

The set of estimated change-points T̂ =
{
τ̂1, . . . , τ̂L̂

}
The set of true change-points T0 =

{
τ0,1, . . . , τ0,L0−1

}
,

E(A‖B) = supb∈B infa∈A |a− b|, for two sets A and B.



Change-point detection: consistency

Theorem 4 [A., Gäıffas, Guilloux (2014)]

Under Assumptions 3 and 4, and if L̂ ≥ L0 − 1, we have

P
[
E(T̂ ‖T0) ≤ εn

]
→ 1, as n→∞.

Theorem 4 ensures that even when the number of change-points
is over-estimated, each true change-point is close to the
estimated one.

We are able to use the same regularization parameters ŵ .
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Algorithm: Proximal operator of the weighted TV

The proximal operator proxf of a proper, lower semi-continuous,
convex function f : Rm → (−∞,∞], is defined as

proxf (v) = argmin
x∈Rm

{1

2
‖v − x‖2

2 + f (x)
}
, for all v ∈ Rm.

β̂ = argmin
β∈Rm

+

{1

2
‖N− β‖2

2 + ‖β‖TV,ŵ

}
,

where N = [Nj ]1≤j≤m ∈ Rm
+ is given by

N =


√
mN̄n(I1,m)

...√
mN̄n(Im,m)



β̂ = prox‖·‖TV,ŵ
(N).



Algorithm: Proximal operator of the weighted TV

If we have a feasible dual variable û, we can compute the primal
solution β̂, by Fenchel duality.

The KKT optimality conditions characterize the unique solutions
β̂ and θ̂k := ŵk+1ûk .

The algorithm consists in running forwardly through the samples
[Nk ]1≤k≤m.

Using the KKT, at location k , β̂k stays constant where
|θ̂k | < ŵk+1.

If this is not possible, it goes back to the last location where a
jump can be introduced in β̂, validates the current segment until
this location, starts a new segment, and continues.



Simulated data

We simulate counting processes with inhomogeneous piecewise
intensities λ0, with 5, 15 and 30 change points.

0.0 0.2 0.4 0.6 0.8 1.0
0

500

1000

1500

2000

2500

3000 λ0

0.0 0.2 0.4 0.6 0.8 1.0
0

500

1000

1500

2000

2500

3000 λ0

0.0 0.2 0.4 0.6 0.8 1.0
0

5000

10000

15000

20000

25000

30000

35000
λ0



We plot the estimator for the three models

0.0 0.2 0.4 0.6 0.8 1.0
0

500

1000

1500

2000

2500

3000 λ0

λ̂

0.0 0.2 0.4 0.6 0.8 1.0
0

500

1000

1500

2000

2500

3000 λ0

λ̂

0.0 0.2 0.4 0.6 0.8 1.0
0

5000

10000

15000

20000

25000

30000

35000
λ0

λ̂



Simulated data

To evaluate the performance of the total-variation procedure λ̂,
we use a Monte-Carlo averaged mean integrated squared error
MISE.

MISE(λ̂, λ0) = E
∫ 1

0 (λ̂(t)− λ0(t))2dt.

We run 100 Monte-Carlo experiments, for an increasing sample
size between n = 500 and n = 30000, for each 3 examples.



Simulated data

We plot the MISEs of the weighted and the unweighted total
variation, ŵ ≡ 1, for the three models, as a function of the
sample size.

The estimation error is always decaying with the sample size.
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Next generations sequencing (NGS)

Complementary base pairing, A < − > T and C < − > G

Genome is a complete set of DNA in an organism.

Gene is a DNA sequence that encodes a protein or an RNA
molecule.

DNA is transcribed to mRNA, which is translated into protein
(central dogma).



Next generations sequencing, RNA-seq



Detection of Copy number variation (CNV)

Copy number variations (CNVs), which are gains or deletions of
genomic segments, account for a substantial proportion of
human genetic variations.

CNVs play an important role in the pathogenesis and
progression of cancer and confer susceptibility to a variety of
human disorders.



Real data

We applied our method to the sequencing data of the breast
tumor cell line HCC1954 and its reference cell line BL1954
(Chiang et al. 2009).

The dataset was produced using the Illumina platform, where
the reads are 36bp long.

There are 7.72 million reads for the tumor (HCC1954) samples.

There are 6.65 million reads for the normal (BL1954) samples.



Real data



Real data



Real data
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Take home message

We introduce a data-driven weighted total-variation penalization
for this problem.

We prove that convex optimization for the detection of
change-points in the intensity of a counting process is a
powerful tool.

We prove two families of theoretical results: oracles inequalities
for the prediction error, and consistency in the estimation of
change-points.

The study of maximum likelihood estimation instead of
least-squares.

Multivariate extension of the proposed algorithm.
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