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Counting process: definitions

N = {N(t)}o<t<1 is a counting process if:

e N(0) =0 and N(t) < o0, a.s.,

@ N is an increasing, right-continuous function a.s.,
o AN(t) = N(t)— N(t7) e {0,1}.

N(t)



Counting process: definitions

@ Doob-Meyer decomposition:
N(t)= No(t) + M(t), 0<t<L
—— ——
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o No(t) =E[N(t)] = [y Mo(s)ds.
@ The intensity of N is defined as follows:
Ao(t)dt = P[N has a jump in [t, t + dt)|F(t7)].



Sparse segmentation assumption

Lo
)‘O(t) = 260751(70,14—1,70,16]“)’ 0<t<1,
=1

@ Parameters to be estimated:
o {104 :1<{ <Ly} the set of the true change-points,
o {Bo,¢:1<{<Lo}: the set of the coefficients of the intensity A,
e Ly : the number of the true the change-points.
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Motivations of the sparse segmentation assumption

Signal processing: Segmentation of the audio signals.
Time series analysis.

Study of the genomic profiles: RNA-seq.

RNA-seq can be modelled mathematically as replications of an
inhomogeneous counting process with a piecewise constant
intensity (Shen, Zhang (2012)).



Assumption on the observations

@ The assumption that the process is in [0, 1] is for the sake of
simplicity.

Assumption 2

We observe n i.i.d copies of N on [0, 1], denoted N, ..., N,.
o We define N,(1) = 157 Ni(1), Ni(1) = [, dN;(t), for all

o

subinterval / of [0, 1].

@ Assumption 2 is equivalent to observing a single process N with
intensity n\g.






A procedure based on total-variation penalization

@ We introduce the least-squares functional

1 n 1
R,,()\):/O )\(t)2dt—iZ/o A(t)dN;(t).
i=1

@ Fix m= m, > 1, an integer that shall go to infinity as n — co.
o We approximate Ag in the set of nonnegative piecewise constant
functions on [0, 1] given by

m
/\m = {/\ﬁ = Zﬁjym)\j,m : /8 = [ﬁj,mllgjgm S RT},
j=1
where L
T = ]
’ m 'm
@ We consider the estimator

N

B = argmin { Ra(As) + l1Bll v, }-
BERT



A procedure based on total-variation penalization

@ The weighted total-variation penalty is given by:

m
1BlTv,w =D W;18; — Bj-l-

Jj=2

® [Wjli<j<m, where Ww; =0, and W; > 0, controls the sparsity of
the successive difference of the vector £5.

@ The estimator of )\g is defined as follows:

m

A=x;= P T T
j=1






Data-driven weights

Fix x > 0, and introduce the data-driven weights,

Data-driven weights

%:5.66\/m(x+|ogm+hnﬁxyj)\/j +9.31\/ﬁ(x+1—|—170gm+h,,yx,j)

n

% g o((i=1
o V= fy((432.1)).
o h,.j=2loglog (%W Ve): a technique term given

by the Bernstein inequality (Gaiffas, Guilloux (2012)).
@ In practical, we consider the dominant term of the data-driven
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weights




Oracle inequality with slow rate: general case

@ The linear space A, is endowed by the norm
N = (Jo A3(£)de)2.

@ We consider the general case of any intensity function of a
counting process.

o The estimator .\ satisfies the following:

Theorem 1 [A., Gaiffas, Guilloux (2014)]
Fix x > 0 and let the data-driven weights w defined as above.
Then, we have

I3 2ol < ot (133 = ol + 20l

with a probability larger than 1 — 12.85e™*.



Oracle inequality with fast rate: under Assumption 1

o Let §: the support of the discrete gradient of [?
S= {j: ijm #Bj—l,m pour j = 2,...,m}.
o Let [ the estimated number of change-points defined by:
L=15

Theorem 2 [A., Gaiffas, Guilloux (2014)]

Fix x > 0, let )\ be the same as in Theorem 1. Assume that L satisfies
L < Lpax. Then, we have

,\_ 2< . . 2 . A2
1A= Aol 75'6%1,”)‘5 Ao|” + 6(Lmax +2(Lo — 1)) max i

[IMolloo (x + Lmax(1 + log m))
1

+ K;
n

m(x + Lmax(1 + log m))2

+ K> 2

)

with a probability larger than 1 — Ly.xe™, with
[Xolloo = SUP¢epo,1) Ao(t), K1 = 1670.89, and K» = 6683.53.



Oracle inequality with fast rate: under Assumption 1

o let So,m = [Boj,mli<j<m the coefficients vector of the projection
of Ao on A, and Ag max = maxi<y <ty |Boe — Boer|-

Lemma: Control of the bias

Given Assumption 1, we have

2(L0 - 1)A2 max
R
m
@ Theorem 2 proves that our procedure has a fast rate of

LmaxVLo)m|
convergence of order (Lmex/Eo)miosm

A consequence is that an optimal tradeoff between
approximation and complexity is given by the choice m ~ n'/?.
If Lax = O(m) = m ~ n'/3.

0 If Lynax = O(1) = m ~ n'/2.

We are able to use the same procedure in Theorems 1 and 2,

while it is not the case in the signal + white noise considered
(Harchaoui and Levy Leduc (2010)).






Change-point detection: consistency

e The approximate change-points sequence [jslo</<, is defined as
the right-hand side boundary of the unique interval /;, ,, that
contains the change-point 7o .

07-0,56(”;1 j—‘},forﬁzl,...,Lo—l, where jo = 0 and

m 'm
JL, = m by convention.
70,01 7o/ 70,041

T lipm livi,m
o Let § = {fl, .. vji} with ji < --- <f[ of the support of the
discrete gradient of /§

e We introduce jo = 0 and f£+1 = m, we define simply 7y = % for
¢=0,...,[+1.



Change-point detection: consistency

@ We will not be able to recover the exact position of two
change-points if they lie on the same interval /; ,.

Assumption 3
Grant Assumption 1 and assume that there is a positive constant ¢ > 8
such that

1§n2i§nLo |70, — T0,6-1| > %,
— The change-points of A are sufficiently far apart.
— There cannot be more than one change-point in the
“high-resolution” intervals /; .

@ The procedure will be able to recover the (unique) intervals
liy,m, for £=10,..., Lo, where the change-point belongs.



Change-point detection: consistency

@ Aimin=min jr+1 — Je|, the minimum distance between
j,min 1<0<Lp—1 |./€+1 J€|
two consecutive terms in the change-points of .
@ Agmin = min — , the smallest jump size of
B,min 1<q<m—1 |60,q+1,m BO,q,m’ J p

the projection Ao, m of Ag onto Ap,.

@ (en)n>1, @ non-increasing and positive sequence that goes to
zero as n — oo, and such that me, > 6 for any n > 1.

Assumption 4
We assume that Aj min, Ag min and (€,)n>1 satisfy

V nmEnAﬁ,min — 60 @G \/EAj,minAﬁ,min
Vl0og m v/mlog m

— 00, as N — 0.



Change-point detection: consistency

@ Assumption 4 controls the rate () of convergence of 7
towards g ¢.

Theorem 3 [A., Gaiffas, Guilloux (2014)]

Under Assumptions 3 and 4, and if [ = Ly — 1, then the change-points
estimators {7y,...,7;} satisfy

IP’{ max |7 — 7ol Ssn} — 1, as n — oo.
1<0<lo—1 ’

o If m= n'/3, Theorem 3 holds with ¢, = n™Y/3, Ag in = n~1/6

et Aj,min > 6.
e m= n1/2, Theorem 3 holds with ¢, = n_l/z,Ag,min =n 6 et
Aj,min > 6.



Change-point detection: consistency

@ We evaluate a non-symmetrized Hausdorff distance £(77|75)

between:
@ The set of estimated change-points T = {?1, . 77A'£}
@ The set of true change-points 7y = {7'0,1, ... ,TO’LO_l},

o E(A||B) = suppepinfacala— bl, for two sets A and B.

A
G

.......
........

m,



Change-point detection: consistency

Theorem 4 [A., Gaiffas, Guilloux (2014)]

Under Assumptions 3 and 4, and if L > Ly — 1, we have

PE(TIT5) <] =1, as n— oo

@ Theorem 4 ensures that even when the number of change-points

is over-estimated, each true change-point is close to the
estimated one.

@ We are able to use the same regularization parameters w.






Algorithm: Proximal operator of the weighted TV

@ The proximal operator prox, of a proper, lower semi-continuous,
convex function f : R™ — (—o00, o], is defined as

1
proxs(v) = argmin {E”V —x|I5 + f(x)}, for all v € R™.

x€eRm

A ol
B = argmin { SIIN = 815 + [1llrv.q }.
BERT

i
where N = [Nj]1<j<m € RT is given by

\/E/\_/n(ll,m)
N = :
VN, (I m)

B = proxj ., (N).



Algorithm: Proximal operator of the weighted TV

o If we have a feasible dual variable &, we can compute the primal
solution (3, by Fenchel duality.

@ The KKT optimality conditions characterize the unique solutions
B and ék = WkJrlﬁk.

@ The algorithm consists in running forwardly through the samples
[Nkli<k<m.

@ Using the KKT, at location k, B stays constant where
10k] < W1

@ If this is not possible, it goes back to the last location where a

jump can be introduced in /3, validates the current segment until
this location, starts a new segment, and continues.



Simulated data

@ We simulate counting processes with inhomogeneous piecewise
intensities Ag, with 5, 15 and 30 change points.
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We plot the estimator for the three models
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Simulated data

@ To evaluate the performance of the total-variation procedure /A\,
we use a Monte-Carlo averaged mean integrated squared error
MISE.

o MISE(}, Ao) = E fj (A o(t))2dt.

e We run 100 Monte—CarIo experlments, for an increasing sample
size between n = 500 and n = 30000, for each 3 examples.



Simulated data

@ We plot the MISEs of the weighted and the unweighted total
variation, w = 1, for the three models, as a function of the
sample size.

@ The estimation error is always decaying with the sample size.
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Next generations sequencing (NGS)

M

@ Complementary base pairing A< —>Tand C < —>G
@ Genome is a complete set of DNA in an organism.

@ Gene is a DNA sequence that encodes a protein or an RNA
molecule.

@ DNA is transcribed to mRNA, which is translated into protein
(central dogma).



Next generations sequencing, RNA-seq
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Detection of Copy number variation (CNV)
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e Copy number variations (CNVs), which are gains or deletions of
genomic segments, account for a substantial proportion of
human genetic variations.

@ CNVs play an important role in the pathogenesis and

progression of cancer and confer susceptibility to a variety of
human disorders.



@ We applied our method to the sequencing data of the breast
tumor cell line HCC1954 and its reference cell line BL1954
(Chiang et al. 2009).

@ The dataset was produced using the lllumina platform, where
the reads are 36bp long.

@ There are 7.72 million reads for the tumor (HCC1954) samples.
@ There are 6.65 million reads for the normal (BL1954) samples.



Real data

Binned counts of reads on the tumor data
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Real data

Weighted total-variation estimator on the tumor data
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Real data

Weighted total-variation estimator for the normal reads
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Take home message

We introduce a data-driven weighted total-variation penalization
for this problem.

We prove that convex optimization for the detection of
change-points in the intensity of a counting process is a
powerful tool.

@ We prove two families of theoretical results: oracles inequalities
for the prediction error, and consistency in the estimation of
change-points.

The study of maximum likelihood estimation instead of
least-squares.

@ Multivariate extension of the proposed algorithm.
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