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Chapter I

Introduction

In this Chapter, we aim to give a very brief introduction to the high-dimensional problems
that currently mathematicians, statisticians and data miners are trying to address. Rather
than attempting to give an overview of this vast area, we will explain what is meant by high-
dimensional data and then focus on some methods which have been introduced to deal with
this sort of data. The approaches from these fields are often di�erent from each other in the
way of tackling high-dimensional data. However, there is one main point that reconcile theses
scientific communities: something has to be done to reshape the classical approaches to better
analyse high-dimensional data.

1 Challenges of High-Dimensional Modeling
In the current century, a mixture of expertise and the new technologies leads to the avail-

ability of massive amount of data. Our society invests massively in the collection and processing
of data of all kinds; hyperspectral imagery, internet portals, financial tick by tick data, and
DNA microarrays are just a few of the better-known sources, feeding data in torrential streams
into scientific and business databases world-wide.
The trend today is towards more observations but even more larger number of variables. We
are seeing examples where the data collected on individual observation are curves, or spectra,
or images, or even movies, so that a single observations has dimensions in the thousands or
billions, while there are only tens or hundreds of observations available to study. Classical
methods cannot cope with this kind of explosive growth of the dimensionality of the observa-
tion matrix. Therefore high dimensional data analysis will be a very significant activity in the
future, and completely new methods of high dimensional data analysis will be developed.

Over the last few decades, data, data management, and data processing have become ubiqui-
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tous factors in modern life and work. Huge investments have been made in various data gather-
ing and data processing mechanisms. The information technology industry is the fastest growing
and most lucrative segment of the world economy, and much of the growth occurs in the de-
velopment, management, and warehousing of streams of data for scientific,medical,engineering,
and commercial purposes. Some recent examples include, Fan and Li (2006),:

— Biotech Data: the fantastic progress made in the last years in gathering data about the
human genome have spread statistical concepts toward biological fields. This is actually
just the opening round in a long series of developments. The genome is only indirectly
related to protein function and protein function are only indirectly related to overall
cell function. Over time, the focus is likely to switch from genomics to proteomics and
beyond. In the process more and more massive databases will be compiled.

— Financial Data: over the last decade, high frequency financial data have become avail-
able; in the early to mid 1990s data on individual currency trades, became available,
tracking individual transactions. After the recent economic crisis, statistical models
for long and high dimension streams of data are required to better predict trembling
situations.

— Consumer Financial Data: many transactions are made on the web; browsing, searching,
purchasing are being recorded, correlated, compiled into databases, and sold and resold,
as advertisers scramble to correlate consumer actions with pockets of demand for various
goods and services.

Previous examples showed that we are in the era of massive automatic data collection, sys-
tematically obtaining many measurements, not knowing which ones will be relevant to the
phenomenon of interest. Therefore, statisticians must face the problem of high dimensionality,
reshaping the classical statistical thinking and data analysis.

2 High-Dimensioanl Data Analysis
Statistical estimation in high-dimensional situations, where the number of measured vari-

ables p is substantially larger than the sample size n, also known as, large-p-small-n, is funda-
mentally di�erent from the estimation problems in the classical settings where we have small-p-
large-n. Since high-dimensional datasets are not uncommon in modern real-world applications,
such as gene expression microarray data and functional. In many real-world problems the num-
ber of covariates is very large and often statisticians have to tackle the challenge of treating
data in which the number of variables p is much larger than the number of observations n, i.e
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when n π p, or sometimes p = p
n

grows with n in the asymptotic analysis, possibly very fast,
so that n π p

n

for n tends to infinity. Such high-dimensional settings with their many new
scientific problems create great opportunities and significant challenges for the development
of new techniques in statistics. From a classical statistical point of view, many algorithms
for solving the problem of dimensional reduction and feature extraction have been conceived
in order to obtain parsimonious models that are desirable as they provide simple and inter-
pretable relations among scientific variables in addition to reducing forecasting errors. But in
high-dimensional systems, we work with large size problems (from on the order of 50 ≠ 100 up
to thousands of variables) and the space of all possible subset of variables is of the order of
2p. Treating exhaustively all the possible subsets of models is not realistic because the study
of all the sub-models is a NP-hard problem with computational time increasing exponentially
with the dimensionality. Moreover, high dimensional real problems often involve costly exper-
imentations and new techniques are needed to reduce the number of the experimental trials
though guaranteeing satisfactory results. The expensive experimental and computational costs
make traditional statistical procedures infeasible for high-dimensional data analysis. Generally
speaking, learning salient information from relatively a few samples when many more variables
are present is not possible without knowing special structures in the data.

To alleviate the ill-posed problem, it is natural to restrict our attention to subsets of all
solutions with certain special structures or properties and meanwhile to incorporate the regu-
larization ideas into estimation. Crucially, one has to assume in this setting that the data have
sparse structure, meaning that most of the variables are irrelevant for accurate prediction. The
task is hence to filter-out the relevant subset of variables. While high dimensionality of a data
set is evident from the start, it is usually not easy to verify structural sparseness.
Sparsity is one commonly hypothesized condition and it seems to be realistic for many real-
world applications. There has been a surge in statistical literature, which is the LASSO.

The LASSO, proposed by Tibshirani (1996), is an acronym for Least Absolute Shrinkage
and Selection Operator. Among the main reasons why it has become very popular for high-
dimensional estimation problems are its statistical accuracy for prediction and variable selection
coupled with its computational feasibility.
The LASSO opens a new door to variable selection by using the ¸

1

-penalty in the model fitting
criterion. Due to the nature of the ¸

1

-penalty, the LASSO performs continuous shrinkage and
variable selection simultaneously. Thus the LASSO possesses the nice properties of both the
¸

2

-penalization (ridge) and best-subset selection. It is forcefully argued that the automatic
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feature selection property makes the LASSO a better choice than the ¸
2

-penalization in high
dimensional problems, especially when there are lots of redundant noise features although the ¸

2

regularization has been widely used in various learning problems such as smoothing splines. An
¸

1

method called basis pursuit was also used in signal processing Chen, Donoho and Saunders
(2001). There are many theoretical work to prove the superiority of the ¸

1

-penalization in
sparse settings. It is also shown that the ¸

1

-approach is able to discover the "right" sparse
representation of the model under certain conditions (ref.).

3 Report Outlines
Now, we outline the structure of the rest of this report.

In Chapter 2, we address to present the ordinary regression methods of the linear models, more
specifically, we present the least squares estimation and the ridge estimation. We further de-
fine the LASSO estimator and we study some of its theoretical properties. By the end of this
chapter, we devote our study to a classical e�cient algorithm, namely, least angle regression
(LARS, Efron et al. (2004)) which is a great conceptual tool for understanding the behaviour
of LASSO solutions.

In Chapter 3, we are based in our study to the article Harchaoui and Levy-Leduc (2010). The
authors deal with the estimation of change-points in one- dimensional piecewise constant signals
observed in white noise. Their approach consists in reframing the task in a variable selection
context. For this purpose, they use a penalized least square criterion with a ¸

1

-type penalty.
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Chapter II

LASSO-Type Estimator

The LASSO was proposed as a technique for linear regression. Linear regression is itself a
specific technique of regression and this focus on techniques for computing this operator. This
introductory chapter precises this hierarchy of problem with their settings, motivations and
notations. Particular attention is given to the LASSO itself and algorithms for solving it, han-
dling the ¸

1

-norm, and a generalized definition of the LASSO. We discuss in this chapter some
fundamental methodological and computational aspects which addresses some bias problems of
the LASSO. The methodological steps are supported by describing various theoretical results
which will be fully developed.

1 Linear Regression Model
In this chapter, we consider the problem of estimating the coe�cient vector in a linear

regression model, defined as
Y = X—ı + Á. (II.1)

Or equivalently

Y =
pÿ

j=1

—ı

j

X
j

+ Á, (II.2)

where we use the following notations:

X =

Q

ccca

x
1,1

· · · x
1,p

... . . . ...
x

n,1

· · · x
n,p

R

dddb =

Q

ccca

x
1

...
x

n

R

dddb =
1

X
1

· · · X
p

2
,
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II.1 Linear Regression Model

Y =

Q

ccca

Y
1

...
Y

n

R

dddb , Á =

Q

ccca

Á
1

...
Á

n

R

dddb , and —ı =

Q

ccca

—ı

1

...
—ı

p

R

dddb .

Here X is the n ◊ p design matrix which can either be non-stochastic or random. It is selected
by the experimenter to determine its relationship to the observation. As per convention, rows
of X represent the p-dimensional observations and columns of X represent the predictors. Y is
the observation vector and the outcome of a statistical experiment. The coe�cients Y

i

are also
called the endogenous variables, response variables, measured variables, or dependent variables.
—ı is the target coe�cient vector to be estimated. The statistical estimation focuses on it. It
represents the variables of interest. The entries of —ı are the regression coe�cients. We regard Á

as a column vector, and use Á€ to denote its conjugate transpose. The noise measurement error
vector Á = (Á

1

, ..., Á
n

)€ captures all others factors which influence the observation. Depending
on the model, Á is assumed to be iid according to a known distribution. Here we do not have
to generally assume that the error possesses a finite second moment ‡2 for each component.
This corresponds to a situation where one observes some real variables (here variable is taken
in its physical sense, not the probabilistic one) X

1

, ..., X
p

and Y at n di�erent times or under
n di�erent circumstances. This results in n groups of values of those variables (X

1

, ..., X
p

, Y
i

)
for i œ {1, ..., n} each group corresponding to a time of observation or a particular experiment.
We denote by Y = (Y

i

)
1ÆiÆn

and (X
1

, ..., X
p

) the corresponding vectors. In this setting the
main assumption is that the variable of interest Y is a linear (but otherwise unknown) function
of the explanatory variables X1, ..., Xp plus some random perturbation. Classically, we are
interested in estimation of the parameters —ı

j

or equivalently X—ı. As a particular case, we
present an elementary but important statistical model, the Gaussian linear model. Gaussian
linear regression is a statistical framework in which, the vector of noise had been distributed
according to a zero-mean Gaussian distribution. It reads as

Á s N
n

(O, ‡2Id
n

),

where N
n

is the n-multivariate Gaussian distribution, Id
n

œ Rn◊n is the identity matrix, and ‡

is the standard deviation. In this case, the random vector Á is called a a Gaussian white noise.

1.1 Least Squares Estimator and Ridge Estimator

We present two popular methods to estimate the parameter —ı, the least squares estimator
and the ridge estimator.
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II.1 Linear Regression Model

Least Squares Estimator

The usually method for estimating the parameter —ı œ Rp is the least squares. It consists in
the search of a value —̂ of the parameter which minimizes the the residual sum of squares (RSS):

nÿ

i=1

(y
i

≠ x
i

—̂)2 = min
—œRp

nÿ

i=1

(y
i

≠ x
i

—)2.

One can write this minimization problem in a matrix form as following:

ÎY ≠ X—̂Î2

n

= min
—œRp

ÎY ≠ X—Î2

n

, (II.3)

where Î · |
2

is the standard ¸
2

-norm given by ÎxÎ2

2

= 1

n

q
m

i=1

x2

i

, for all x œ Rm. It is clear that
there is always a solution —̂ of the minimization problem II.3, namely, least squares estimator
(LSE) of —ı which will be noted as —ls. We write

—̂
ls

œ arg min
—œRp

1
n

nÿ

i=1

(y
i

≠ x
i

—)2 = arg min
—œRp

ÎY ≠ X—Î2

n

.

If the design matrix X€X is invertible then the least squares estimator has an unique solution,
defined by

—̂
ls

= (X€X)≠1X€Y. (II.4)

It is well known that ordinary least squares often does poorly in both prediction and inter-
pretation. Penalization techniques have been proposed to improve ordinary least squares. For
example, ridge regression Hoerl and Kennard (1988), minimizes RSS subject to a bound on
the ¸

2

-norm of the coe�cients. As a continuous shrinkage method, ridge regression achieves its
better prediction performance through a bias-variance trade-o�.
Ridge Estimator

Note that the basic requirement for the Least squares estimation of a linear regression is X€X≠1

exists. There are two reasons that the inverse does not exits. First, n π p and collinearity
between the explanatory variables. The technique of ridge regression is one of the most popular
and best performing alternatives to the ordinary least squares methods. A simple way to
guarantee the invertibility is adding a diagonal matrix to X€X, i.e. X€X+⁄ I

p

where I
p

is a
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II.1 Linear Regression Model

p ◊ p identity matrix. The ridge regression estimator is then

—̂
r

(⁄) = (X€X + ⁄I
p

)≠1X€Y. (II.5)

where ⁄ > 0 is a parameter needs to be chosen. The motivation of ridge regression is very
simple, but it has good performance. Another way to understand it is that we dont expect
an estimator with too large —ı. Thus, we penalize the value of —ı. Recall the least square
estimation is to minimize

To penalize the value of —ı, we can consider estimate —ı by minimizing

—̂
r

(⁄) œ arg min
—œRp

1
n

nÿ

i=1

(y
i

≠ x
i

—)2 + ⁄Î—Î2

2

= arg min
—œRp

ÎY ≠ X—Î2

n

+ ⁄Î—Î2

2

. (II.6)

It is not di�cult to prove that to solution of — to the above problem is

—̂
r

(⁄) = (X€X + ⁄I
p

)≠1X€Y.

Note that with larger ⁄, the penalty on — tends to be stronger; the solution of —ı will be
smaller.
Variable Selection

The parameter —ı = (—ı

1

, ..., —ı

p

)€ shows the weight of the explanatory variables X
1

, ..., X
p

over the response Y. When the number of the explanatory variables is very important, an
objectif would be evaluated the contribution of each variable and eliminated the non-pertinent
variables. This typical approach gives an interpretable estimators. In this context, the least
squares and ridge estimator are not e�cient. It is useful to consider some competent methods
to select the subset of the explanatory variables, a�ording an almost complete representation
of the response variable Y. Therefore, diverse strategies are been proposed for achieving the
determination of the pertinent variables. Some classical approach is Subset Selection. Let B

k

a subset of explanatory variables of size k which reduces the maximum of RSS (ref.).

Another strategy for the variable selection is the thresholding. In this case, we use a prelimi-
nary estimator (e.g. the LSE when p Æ n), which we exploit it to exclude some variables from
the study. A variable will be selected only when the estimation of the corresponding regres-
sor coe�cient, obtained by the preliminary estimator, exceeds some threshold defined by the
statistician. As an example, we can consider the soft thresholding and the hard thresholding
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II.1 Linear Regression Model

(ref.)

To reduce the number of explanatory variables, diverse tests based on the LSE are been proposed
for testing the relevance of each variable X

j

. For all j œ {1, ..., p}, these procedures test under
the null hypothesis —ı

j

= 0 and the alternative hypothesis —ı

j

”= 0. Frequently, when the noise
is gaussian, someone uses the Student test or Fisher test.

1.2 Penalized Least Squares and Sparsity

Let A an arbitrary set, we note by |A| the cardinal of A. For the study of the method of
variable selection, it is convenient to define the sparsity set as the following:

Definition 1.1 Let the model defined by II.2. One can define the support set associated to
the vector —ı by

Sı = Sı(—ı) := {j œ {1, ..., p} : —ı

j

”= 0}. (II.7)

Thereafter, we call that the vector —ı has the sparsity assumption if the quantity |Sı| π p.

The construction of interpretable estimators is an important issue. Some of them are obtained
from the ¸

0

-penalization such that the Information Criterion C
p

of Mallows, Akaike Information
Criterion (AIK) or the Bayesian Information Criterion (BIC). These criterions select from a
collection of size D estimators of —ı,

F̂ = {—̂
1

, ..., —̂
D

},

whose has the good estimation of X—ı and the good estimation to the set of the pertinent
variables Sı defined in II.8. Clearly, one can understand the important of the choice of this
family F̂ . Moreover, these criterions are constructed from the penality ⁄Î—Î

0

which interferes
the ¸

0

-norm of the vector —, defined by

Î—Î
0

:=
pÿ

j=1

11{—

j

”=0},

11{·} denotes the indicator function
Unfortunately, the ¸

0

-minimization problems are known to be NP-hard in general, so that
the existence of polynomial-time algorithms is highly unlikely. This challenge motivates the use
of computationally tractable approximations or relaxations to ¸

0

minimization.In particular, a
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II.2 LASSO Estimator

great deal of research over the past decade has studied the use of the ¸
1

-norm as a computa-
tionally tractable surrogate to the ¸

0

-norm. The LASSO for linear models is the core example
to develop the methodology for ¸

1

-penalization in high-dimensional settings. Moreover, it is a
penalized least squares method imposing a ¸

1

-penalty on the regression coe�cients. Due to the
nature of the ¸

1

-penalty, the LASSO does both continuous shrinkage and automatic variable
selection simultaneously.

2 LASSO Estimator

2.1 Definition

Definition 2.1 The LASSO estimator of —ı œ Rp is defined as

—̂
lasso

= —̂
lasso

(⁄) := arg min
—œRp

Ó1
2ÎY ≠ X—Î2

n

+ ⁄Î—Î
1

Ô
, (II.8)

where the Î—Î
1

:=
pÿ

j=1

|—
j

| is the ¸
1

-norm.

The parameter ⁄ can be depended to the number of observation n, i.e. ⁄ © ⁄
n

. Also, ⁄ Ø 0 is
a shrinkage tuning parameter. A larger ⁄ yields a sparser linear sub-model whereas a smaller
⁄ corresponds to a less-sparse one. In extreme cases, ⁄ = 0 gives the unregularized model and
⁄ = Œ produces the null model consisting of no predictor.

Equivalently, the convex program II.8 can be reformulated as the ¸
1

-constrained quadratic
problem as following: Y

]

[
min

—œRp

Ó
1

2

ÎY ≠ X—Î2

n

Ô

s.t. Î—Î
1

Æ t
(II.9)

for some t > 0. If t is greater than or equal to the ¸
1

-norm of the ordinary least squares esti-
mator, then that estimator is, of course, unchanged by the LASSO. For smaller values of t, the
LASSO shrinks the estimated coe�cient vector towards the origin (in the ¸

1

sense), typically
setting some of the coe�cients equal to zero. Thus, the LASSO combines characteristics of
ridge regression and subset selection and promises to be a useful tool for variable selection.
Problems II.8 and II.9 are equivalent; that is, for a given ⁄, 0 < ⁄ < Œ, there exists a t > 0
such that the two problems share the same solution, and vice versa. Optimization problems
like II.9 are usually referred to as constrained regression problems while II.8 would be called

10



II.2 LASSO Estimator

a penalized regression.

Under a few assumptions, which are detailed in the sequel, the solution of this problem is
unique. We denote it by—̂

lasso

© —̂
lasso

(⁄) and define the regularization path P as the set of all
solutions for all positive values of ⁄

P := {—̂
lasso

(⁄) : ⁄ > 0}. (II.10)

The following proposition presents classical optimality and uniqueness conditions for the Lasso
solution, which are useful to characterize P:

2.2 Convex Optimality and Uniqueness

We begin with some basic observations about the LASSO problem II.8. First, the minimum
in the Lasso is always achieved by at least one vector . This fact follows from the Weierstrass
theorem, because in its ¸

1

-constrained form II.9, the minimization is over a compact set, and
the objective function is continuous. Second, although the problem is always convex, it is not
always strictly convex, so that the optimum can fail to be unique. Indeed, a little calculation
shows that the Hessian of the quadratic component of the objective is the p ◊ p X

€
X

n

matrix
, which is positive de?nite but not strictly so whenever . Nonetheless, as stated below in the
Lemma 1, strict dual feasibility conditions are su�cient to ensure uniqueness, even under high-
dimensional scaling n π p.

The objective function is not always di�erentiable, since the ¸
1

-norm is a piecewise linear
function. However, the optima of the Lasso II.8 can be characterized by a zero subgradient
condition. A vector is w œ Rp a subgradient for the ¸

1

-norm evaluated at — œ Rp , written as
w œ ˆÎ—Î

1

, if its elements satisfy the relations
Y
]

[
w

j

= sign(—
j

), if —
j

”= 0
w

j

œ [≠1, +1], otherwise
(II.11)

For any subset A œ {1, ..., p}, let X
A

be the n ◊ |A| matrix formed by by concatenating the
columns {X

j

: j œ A} indexed by A With these definitions, we state the following.

Lemma 2.1 (Karush Kuhn Tucker(KKT) Optimality Conditions)

11



II.2 LASSO Estimator

A vector —̂ œ Rp is a solution of II.8 if and only if for all j œ {1, ..., p},

Y
]

[
X€

j

(Y ≠ X—̂) = ⁄sign(—̂
j

), if —̂
j

”= 0
|X€

j

(Y ≠ X—̂)| Æ ⁄, otherwise.
(II.12)

Define
Ŝ := {j œ {1, ..., p} : |X€

j

(Y ≠ X—̂)| = ⁄}.

Assuming the matrix X
ˆ

S

to be full rank, the solution is unique and we have

—̂ = (X€
ˆ

S

X
ˆ

S

)≠1(X€
ˆ

S

Y ≠ z
ˆ

S

), (II.13)

where z
ˆ

S

= sign(X€(Y ≠ X—̂)) is in {≠1; 0; +1}p, and the notation u
ˆ

S

for a vector u denotes
the vector of size |Ŝ| recording the entries of u indexed by Ŝ.

Proof. The propertie II.12 can be obtained by considering subgradient optimality conditions.
These can be written as 0 œ {(≠X€(Y ≠ X—̂ + ⁄w : w œ ˆÎ—̂Î))}. The equalities in II.12
define a linear system that has a unique solution given by II.13 when XŜ is full rank.
Let us now show the uniqueness of the Lasso solution. Consider another solution —̂Õ and choose
a scalar – in (0, 1). By convexity, —̂– := –—̂ + (1 ≠ –)—̂Õ is also a solution. for all j ™ Ŝ, we have

|X€
j

(Y ≠ X—̂–)| Æ –|X€
j

(Y ≠ X—̂)| + (1 ≠ –)|X€
j

(Y ≠ X—̂Õ)| < ⁄.

Combining this inequality with the conditions II.12 we necessarily have —̂–

ˆ

S

c

= —̂
ˆ

S

c

= 0, and
the vector —̂–

ˆ

S

c

is also a solution of the following reduced problem:

min
Â
—œR|

ˆ

S|
{1

2ÎY ≠ X Â—Î2

n

+ ⁄Î Â—Î
1

}.

When X
ˆ

S

is full rank, the Hessian X€
ˆ

S

X
ˆ

S

is positive definite and this reduced problem is
strictly convex. Thus, it admits a unique solution —̂–

ˆ

S

= —̂
ˆ

S

It is then easy to conclude that
—̂

ˆ

S

= —̂–

ˆ

S

= —̂Õ
ˆ

S

.

Lemma 2.2 (Piecewise Linearity of the Path). Assume that for any ⁄ > 0 and solution
of II.8 the matrix X

ˆ

S

defined in Lemma 2.1 is full-rank. Then, the regularization path P :=
{—̂

lasso

(⁄) : ⁄ > 0} is well defined, unique and continuous piecewise linear.

Proof. The existence/uniqueness of the regularization path was shown in Lemma 2.1. Let
us define {ẑ(⁄) := sign(—̂(⁄)) : ⁄ > 0} the set of sparsity patterns. Let us now consider

12



II.2 LASSO Estimator

⁄
1

< ⁄
2

such that ẑ(⁄
1

) = ẑ(⁄
2

). For all ◊ in [0, 1], it is easy to see that the solution —̂◊ :=
–—̂(⁄

1

) + (1 ≠ ◊)—̂(⁄
2

) satisfies the optimality conditions of Lemma 2.1 for ⁄ = ◊⁄
1

+ (1 ≠ ◊)⁄
2

,

and that —̂(◊⁄
1

+ (1 ≠ ◊)⁄
2

) = —̂◊.

This shows that whenever two solutions —̂(⁄
1

) and —̂(⁄
2

) have the same signs for ⁄
1

”= ⁄
2

,
the regularization path between ⁄

1

and ⁄
2

is a linear segment. As an important consequence,
the number of linear segments of the path is smaller than 3p, the number of possible sparsity
patterns in {≠1, 0, 1}p. The path P is therefore piecewise linear with a finite number of kinks.
Moreover, since the function ⁄ æ —̂(⁄) is piecewise linear, it is piecewise continuous and has
right and left limits for every ⁄ > 0. It is easy to show that these limits satisfy the optimality
conditions of the propretie II.12. By uniqueness of the LASSO solution, they are equal to —̂

and the function is in fact continuous.
In the next section we discuss some theoretical properties of LASSO.

2.3 Theoretical Results of the LASSO: A Brief of View

We begin by some definitions. we assume in our regression setting that the vector — is sparse
in the ¸

0

-sense and many coe�cients of — are identically zero.The corresponding variables have
thus no influence on the response variable and could be safely removed. The sparsity pattern
of ß is understood to be the sign function of its entries,

sign(x) =

Y
___]

___[

+1, ifx > 0
0, ifx = 0
≠1, ifx < 0

The sparsity pattern of a vector might thus look like

sign(—) = (+1, ≠1, 0, 0, +1, +1, ≠1, +1, 0, 0, ...),

distinguishing whether variables have a positive, negative or no influence at all on the response
variable. It is of interest whether the sparsity pattern of the LASSO estimator is a good
approximation to the true sparsity pattern. If these sparsity patterns agree asymptotically, the
estimator is said to be sign consistent.

Definition 2.2 (Sign Consistency)
An estimator —̂ is sign consistent if and only if

P
1
sign(—̂) = sign(—ı)

2
æ 1, as n æ Œ.

13



II.2 LASSO Estimator

Asymptotic properties of the LASSO estimator have been extensively studied and analyzed.
In a seminal work (ref.), Knight and Fu, first derived the asymptotic distribution of the LASSO
estimator and proved its estimation consistency under the shrinkage rate ⁄

n

= o(
Ô

n) and
⁄

n

= o(n). More specifically, as long as errors are iid and possess a common finite second
moment ‡2 , the

Ô
n scaled LASSO estimator with a sequence of properly tuned shrinkage

parameters {⁄
n

}
nœN

has an asymptotic normal distribution with variance ‡2C≠1, where 1

n

X€X
æ C and C is a positive definite matrix.
Zhao and Yu (2006) found a su�cient and necessary condition required on the design matrix
for the LASSO estimator to be model selection consistent, i.e. the irrepresentable condition.

Definition 2.3 (Irrepresentable condition)
Let Sı the support set of —ı also it is the set of the relevant variables and let Sı

c = {1, ..., p}≠—ı

be the set of noise variables. The sub matrix C
UV

is understood as the matrix obtained from
C by keeping rows with index in the set U and columns with index in V . The irrepresentable
condition is fulfilled if

ÎC
S

ı

c

S

ıC
S

ı

S

ı

≠1(sign(—
S

ı)Î
¸Œ < 1.

These conditions are in general not easy to verify. Therefore, instead of requiring conditions
on the design matrix for model selection consistency, there are also several variants of the orig-
inal LASSO. For examples, the relaxed LASSO, Meinshausen (2007), uses two parameters to
separately control the model shrinkage and selection; the adaptive LASSO, Zou (2006), lever-
ages a simple adaptation procedure to shrink the irrelevant predictors to 0 while keeping the
relevant ones properly estimated. Meinshausen and Yu (2009) suggested employ a two-stage
hard thresholding rule, in the spirit of the Gauss-Dantzig selector, Candès and Tao (2007), to
set very small coe�cients to 0.

Since the ground breaking work of Candès and Tao (2007) which provided non-asymptotic
upper bounds on the ¸

2

- estimation loss of the Dantzig selector with large probability, parallel
¸

2

error bounds were found for the LASSO estimator by Meinshausen and Yu (2009) under the
incoherent design condition and by Bickel, Ritov, and Tsybakov (2009) under the restricted
eigenvalue condition. In a previous work of Candès and Tao (2007), they showed that minimiz-
ing the ell

1

-norm of the coe�cient vector subject to the linear system constraint can exactly
recover the sparse patterns, provided the restricted isometry condition holds and the support
of the noise vector is not too large Candès and Tao (2005).
Cai, Xu, and Zhang (2009) tightened all previous error bounds for noiseless, bounded error and
Gaussian noise cases. These bounds are nearly optimal in the sense that they achieve within a
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II.3 Least Angle Regression (LARS)

logarithmic factor the least squares errors as if the true model were known (oracle property).
Wainwright (2006) derived a set of sharp constraints on the dimensionality, sparsity of the model
and the number of observations for the Lasso to correctly recover the true sparsity pattern. The
¸Œ convergence rate of the LASSO estimator was obtained by Lounici (2008). Other bounds for
the sparsity oracle inequalities of the Lasso can be found in Bunea, Tsybakov, Wegkamp (2007).

Despite those appealing properties of the Lasso estimator and the advocacy of using the
LASSO, the LASSO estimate is not guaranteed to provide a satisfactory estimation and de-
tection performance, at least in some application scenarios. For instance, when the data are
corrupted by some outliers or the noise is extremely heavy-tailed, the variance of the LASSO
estimator can be quite large, usually become unacceptably large, even when the sample size
approaches infinity, Knight and Fu (2000). Asymptotic analysis, Knight and Fu (2000), and
non-asymptotic error bounds on the estimation loss, Bickel, Ritov, and Tsybakov (2009), both
suggest that the performance of the LASSO linearly deteriorates with the increment of the
noise power. A similar observation can sometimes be noted when the dimensionality of the
linear model is very high while the data size is much smaller.

3 Least Angle Regression (LARS)
Least Angle Regression is a promising technique for variable selection applications, o�ering

a nice alternative to stepwise regression. It provides an explanation for the similar behavior
of LASSO (¸

1

-penalized regression) and forward stagewise regression, and provides a fast im-
plementation of both. The idea has caught on rapidly, and sparked a great deal of research
interest. We write LAR for least angle regression, and LARS to include LAR as well as LASSO
or forward stagewise as implemented by least-angle methods .In the sequel, we give the algo-
rithm of Least Angle Regression . The LARS algorithm was proposed (and named) by Efron
et al. (2004), though essentially the same idea appeared earlier in the works of Osborne et al.
(2000).

3.1 Description of the Algorithm

The algorithm begins at ⁄ = Œ, where the lasso solution is trivially 0 œ Rp. Then,as
the parameter ⁄ decreases, it computes a solution path —̂

lars

(⁄) that is piecewise linear and
continuous as a function of ⁄. Each knot in this path corresponds to an iteration of the
algorithm, in which the path s linear trajectory is altered in order to satisfy the KKT optimality
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II.3 Least Angle Regression (LARS)

conditions.
The LARS algorithm recursively calculates a sequence of breakpoints Œ = ⁄

0

> ⁄
1

> ⁄
2

>

��� = 0 with —̂(⁄) linear for each interval ⁄
k+1

Æ ⁄ Æ ⁄
k

. The active set Ŝ of the coe�cients
changes, the incactive coe�cients stay fixed at zero. Define the residual vector and correlations

R(⁄) := Y ≠ X—̂(⁄) and C
j

(⁄) := X€
j

R(⁄).

To get a true correlation we would have to divide by ÎR(⁄)Î, which would complicate the
constraints.
The algorithm will ensure that

Y
___]

___[

C
j

(⁄) = +⁄ if —̂
j

(⁄) > 0 (constraint ü)
C

j

(⁄) = ≠⁄ if —̂
j

(⁄) > 0 (constraint °)
|C

j

(⁄)| < ⁄ if —̂
j

(⁄) > 0 (constraint §)

That is, for the minimizing —̂(⁄) each (⁄, C
j

(⁄)) needs to stay inside the region R := {(⁄, c) œ
R+ ◊ R : |c| Æ ⁄}, moving along the top boundary (c = +⁄) when —̂

j

(⁄) > 0 (constraint ü)
along the lower boundary (c = ≠⁄) when —̂

j

(⁄) < 0 (constraint °), and being any where in R

when —̂
j

(⁄) = 0 (constraint §).

3.2 The Algorithm

The solution —̂(⁄) is to be constructed in a sequence of steps, starting with large ⁄ and
working towards ⁄ = 0.

Step 1:
Start with Ŝ

0

= ÿ and —̂ = 0 œ Rp. Define ⁄
1

= max
1ÆjÆp

|X€
j

Y |. Constraint § is satisfied on
[⁄

1

, Œ). For ⁄ Ø ⁄
1

take —̂(⁄) = 0, so that |C
j

(⁄)| < ⁄
1

. Constraint § would be violated if we
kept —̂(⁄) equal to zero for ⁄ < ⁄

1

; the —̂(⁄) must move away from zero as ⁄ decreases below ⁄
1

.

We must have |C
j

(⁄
1

)| = ⁄
1

for at least one j. For convenience of exposition, suppose that
|C

1

(⁄
1

)| = ⁄
1

> |C
j

(⁄
1

)| for all j Ø 2. The active set becomes now Ŝ = 1.

For ⁄
2

Æ ⁄ < ⁄
1

, with ⁄
2

to be specified soon, keep —̂
j

= 0 for j = 2 but let

—̂
1

(⁄) = 0 + v
1

(⁄
1

≠ ⁄),
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II.3 Least Angle Regression (LARS)

for some constant v
1

. To maintain the equalities

⁄ = C
1

(⁄) = X€
1

(Y ≠ X
1

—̂
1

(⁄)) = C
1

(⁄
1

) ≠ X€
1

X
1

v
1

(⁄
1

≠ ⁄) = ⁄
1

≠ v ≠ 1(⁄
1

≠ ⁄)

we need v
1

= 1. This choice also ensures that —̂
1

(⁄) > 0 for a while, so that Constraint ü is
the relevant constraint for —̂

1

(⁄).
For ⁄ < ⁄

1

, with v
1

= 1 we have R(⁄) = Y ≠ X
1

(⁄
1

≠ ⁄) and

C ≠ j(⁄) = C ≠ j(⁄ ≠ 1) ≠ a ≠ j(⁄
1

≠ ⁄) where a
j

:= X
j

X
1

.

Notice that |a
j

| < 1 unless X
j

= ±X
1

. Also, as long asmax
jÆ2

|C
j

(⁄)| Æ ⁄ the other —̂
j

(⁄) is s
still satisfy constraint §.

We need to end the first step at ⁄
2

, the largest ⁄ less than ⁄
1

for which max
jØ2

|Cj(⁄)| = ⁄.

Solve for C
j

(⁄) = ±⁄ for each fixed j Æ 2 :

⁄ = ⁄
1

≠ (⁄
1

≠ ⁄) = C ≠ j(⁄
1

) ≠ a ≠ j(⁄
1

≠ ⁄) ≠ ⁄ = ≠⁄
1

+ (⁄
1

≠ ⁄) = C ≠ j(⁄
1

) ≠ a
j

(⁄
1

≠ ⁄)

if and only if

⁄
1

≠ ⁄ = (⁄
1

≠ C
j

(⁄
1

))/(1 ≠ a ≠ j)⁄
1

≠ ⁄ = (⁄
1

+ C
j

(⁄
1

))/(1 + a
j

).

Both right-hand sides are strictly positive. Thus ⁄
2

= ⁄
1

≠ ”⁄ where

”⁄ := min
jØ2

;
⁄

1

≠ C
j

(⁄
1

))
1 ≠ a

j

· ⁄
1

+ C
j

(⁄
1

))
1 + a

j

<
.

Step 2:
We have C

1

(⁄
2

) = ⁄
2

= max
jØ2

|C
j

(⁄
2

)|, by construction. For convenience of exposition, sup-
pose |C

2

(⁄
2

)| = ⁄
2

> |C
j

(⁄
2

)| for all j Ø 3. The active set now becomes Ŝ = {1, 2}.

For ⁄
3

Æ ⁄ < ⁄
2

and a new v
1

and v
2

, define

—̂
1

(⁄) = —̂
1

(⁄
2

) + (⁄
2

≠ ⁄)v
1

—̂
2

(⁄) = 0 + (⁄
2

≠ ⁄)v ≠ 2
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II.3 Least Angle Regression (LARS)

with all other —̂
j

(⁄) still zero. Write Z for (X1, X2). The new C
j

become

C
j

(⁄) = X€
j

3
Y ≠ X

1

—̂
1

(⁄) ≠ X
2

—̂
2

(⁄)
4

= C
j

(⁄
2

) ≠ (⁄
2

≠ ⁄)X€
j

ZvÕ,

where vÕ = (v1, v2).

Let ⁄
3

be the largest ⁄ less than ⁄
2

for which max
jØ3

|C
j

(⁄)| = ⁄.

General Step:
At each ⁄

k

a new active set Ŝ
k

is defined. During the kth step the parameter ⁄ decreases from
⁄

k

to ⁄
k+1

. For all j in the active set Ŝ
k

, the coe�cients —̂
j

(⁄) change linearly and the C
j

(⁄)
move along one of the boundaries of the feasible region: C

j

(⁄) = ⁄ if —̂
j

(⁄) > 0 and C
j

(⁄) = ≠⁄

if —̂
j

(⁄) < 0. For each inactive j the coe�cient —̂
j

(⁄) > 0 remains zero throughout [⁄
k+1

, ⁄
k

].
Step k ends when either an inactive C

j

(⁄) hits a ±⁄ boundary or if an active —̂
j

(⁄) becomes
zero: ⁄

k+1

is defined as the largest ⁄ less than ⁄
k

for which either of these conditions holds:
— (i) max

j /œ ˆ

S

k

|C
j

(⁄)| = ⁄. In that case add the new j œ Ŝc

k

for which |C
j

(⁄
k+1

)| = ⁄
k+1

to
the active set, then proceed to step k + 1.

— (ii) —̂
j

(⁄) = 0 for some j œ Ŝ
k

. In that case, remove j from the active set, then proceed
to step k + 1.

Two basic properties of the LARS lASSO path, as mentioned in the previous section, are
piecewise linearity and continuity with respect to ⁄. The algorithm and the solutions along its
computed path possess a few other nice properties. We begin with a property of the LARS
algorithm itself.

Lemma 3.1 For any Y, X, the LARS algorithm for the lasso path performs at most

pÿ

k=0

(
Q

a p

k

R

b 2k = 3p

iterations before termination.

Lemma 3.2 For any Y, X, the LARS lASSO solution converges to a minimum ¸
1

-norm least
squares solution as ⁄ æ 0+, that is,

lim
⁄æ0

+
—̂

lars

(⁄) = —̂
ls,¸1

, where —̂
ls,¸1 œ arg min

—œRp ÎY ≠ X—Î2

2

and achieves the minimum ¸
1

norm over all such
solutions.

18



II.3 Least Angle Regression (LARS)

The proofs of this too lemmas can be found in Tibshirani(2012).

Remark LARS has considerable promise, o�ering speed, interpretability, relatively stable pre-
dictions, nearly unbiased inferences, and a nice graphical presentation of coe�cient paths. But
considerable work is required in order to realize this promise in practice. A number of di�erent
approaches have been suggested, both for linear and nonlinear models; further study is needed
to determine their advantages and drawbacks. Also various implementations of some of the
approaches have been proposed that di?er in speed, numerical stability, and accuracy; these
also need further assessment.

19



Chapter III

Multiple Change-Point Estimation
with Total-Variation Penalization

In this chapter, our study will based on the article of Harchaoui and Levy (2010). Change-
points detection tasks are pervasive in various fields. The goal is to partition a signal into several
homogeneous segments of variable durations, in which some quantity remains approximately
constant over time. The authors propose a new approach for dealing with the estimation of
the location of change-points in one-dimensional piecewise constant signals observed in white
noise. Their approach consists in reframing this task in a variable selection context. They use
a penalized least-squares criterion with a ¸

1

-type penalty for this purpose. They prove some
theoretical results on the estimated change-points and on the underlying piecewise constant
estimated function. Then, they explain how to implement this method in practice by using the
LARS algorithm.

1 Estimation of the Means
We are interested in the estimation of the change-point locations tı

k

in the following model:
Y
______]

______[

Y
t

= µı

k

+ Á
t

,

tı

k≠1

Æ t Æ tı

k

≠ 1,

k = 1, ..., Kı + 1,

t = 1, ..., n,

(III.1)

with the convention tı

0

= 1 and tı

K

ı

+1

= n+1 and where the {Á
t

}
0ÆtÆn

are iid zero-mean random
variables, having a sub-Gaussian distribution.

We consider here the multiple changes in the mean problem as described in III.1. Our purpose
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III.1 Estimation of the Means

is to estimate the unknown means µı

1

, ..., µı

K+1

together with the change points from observations
Y

1

, ..., Y
n

. Let us first work with the LASSO formulation to establish the consistency in terms
of means estimation. The model III.1 can be rewritten as

Y n = X
n

—n + Án, (III.2)

where Y =

Q

ccca

Y
1

...
Y

n

R

dddb is the n ◊ 1 vector of observations, X
n

the n ◊ n lower triangular matrix

with nonzero elements equal to one, i.e.

X
n

=

Q

ccccccca

1 0 · · · 0
1 1 . . . ...
... ... . . . 0
1 1 · · · 1

R

dddddddb

and Án =

Q

ccca

Án

1

...
Án

n

R

dddb is a zero mean random vector such that the en Án

1

, ..., Án

n

are iid random

variables with finite variance equal to ‡2 .As for —n it is a n◊1 vector having all its components
equal to zero except those corresponding to the change-points instants. Let us denote by S

the set of nonzero components of —
n

also the support set of —
n

and by its complementary set
defined as follows:

S = {k : —n

k

”= 0} and Sc := 1, ..., n ≠ S. (III.3)

With the reformulation III.2, the evaluation of the means estimation rate amounts to finding
the rate of convergence of ÎX

n

(—̂n(⁄
n

) ≠ —n)Î to zero, —̂n(⁄
n

) satisfying:

—̂n(⁄
n

) =

Q

ccca

—̂
1

n(⁄
n

)
...

—̂
n

n(⁄
n

)

R

dddb = arg min
—œRn

{ÎY n ≠ X
n

—Î2

n

+ ⁄
n

Î—Î
1

}. (III.4)

Hence, within this framework, we are able to prove the following result regarding the consistency
in means estimation of least square-total variation.

Proposition 1.1 Consider Y
1

, ..., Y
n

a set of observations following the model described in
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III.1 Estimation of the Means

III.2. Assume that the Án

1

, ..., Án

n

are iid Gaussian random variables with the variance ‡2 > 0.
Assume also that there exists —

max

such that for all k in A, |—n

k

| Æ —
max

the set A being defined
in III.3. Then, for all n Ø 1 and C > 2

Ô
2, we obtain that with a probability larger than

1 ≠ n1≠ C

2
8 , if ⁄

n

= C‡
Ò

log n

n

,

ÎX
n

(—̂n(⁄
n

) ≠ —n)Î Æ (2C‡—
max

Kı) 1
2
1 log n

n

2 1
4 .

Proof. By the definition of —̂n(⁄
n

) given by III.4, we have

ÎY n ≠ X
n

—̂(⁄
n

)Î2

n

+ ⁄
n

Î—̂(⁄
n

)Î
1

Æ ÎY n ≠ X
n

—Î2

n

+ ⁄
n

Î—Î
1

.

Using III.2, we get

ÎX
n

(—n ≠ —̂n(⁄
n

))Î2

n

+ 2
n

(—n ≠ —̂n(⁄
n

))€X€
n

Án + ⁄
n

nÿ

k=1

|—̂n

k

(⁄
n

)| Æ ⁄
n

nÿ

k=1

|—n

k

|.

Therefore,

ÎX
n

(—n ≠ —̂n(⁄
n

))Î2

n

Æ 2
n

(—̂n(⁄
n

) ≠ —n)€X€
n

Án + ⁄
n

ÿ

jœS

(|—n

j

| ≠ |—̂n

j

(⁄
n

)|) ≠ ⁄
n

ÿ

jœS

c

—̂n

j

(⁄
n

).

Observe that
2
n

(—̂n(⁄
n

) ≠ —n)€X€
n

Án = 2
nÿ

j=1

(—̂n

j

(⁄
n

) ≠ —n

j

)
3 1

n

nÿ

i=j

Án

i

4
.

Let us define the event
E :=

n‹

ju1

Ó 1
n

----
nÿ

i=j

Án

i

---- Æ ⁄
n

2
Ô
.

Then, given that the Án

1

, ..., Án

n

are iid zero mean Gaussian variables with finite variance equal
to ‡2, we obtain that

P(Ec) =
nÿ

j=1

P
3 1

n

----
nÿ

i=j

Án

i

---- >
⁄

n

2

4

Æ
nÿ

i=j

exp
3

≠ n2⁄2

n

8‡2(n ≠ j + 1)

4
.

Hence, if ⁄
n

= C‡
Ò

log n

n

,

P(Ec) Æ n1≠ C

2
8 .
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With a probability larger than 1 ≠ n1≠ C

2
8 , we get

ÎX
n

(—n ≠ —̂n(⁄
n

))Î2

n

Æ ⁄
n

nÿ

j=1

|—̂n

j

(⁄
n

) ≠ —n

j

| + ⁄
n

ÿ

jœS

(|—n

j

| ≠ |—̂n

j

(⁄
n

)|) ≠ ⁄
n

ÿ

jœS

c

—̂n

j

(⁄
n

),

where S and Sc are defined in II.4. Given that
nÿ

j=1

|—̂n

j

(⁄
n

) ≠ —n

j

| =
ÿ

jœS

|—̂n

j

(⁄
n

) ≠ —n

j

| ≠
ÿ

jœS

c

—̂n

j

(⁄
n

),

we obtain that, with a probability larger than 1 ≠ n1≠ C

2
8 ,

ÎX
n

(—n ≠ —̂n(⁄
n

))Î2

n

Æ 2⁄
n

ÿ

jœS

|—n

j

|

= 2C‡

Û
log n

n

ÿ

jœS

|—n

j

|

Æ 2C‡—
max

Kı

Û
log n

n
.

Which gives the desired result.

Note that in Proposition 1.1, where no upper bound on the number of change points is
assumed to be known, we do not attain the known (parametric optimal rate which is of order

1Ô
n

derived by Yao and Au (1989) where an upper bound for the number of change points is
available. But, as we shall see in Proposition 2,the rate of Proposition 1 can be improved if the
model and the criterion are rewritten in a di�erent way and if an upper bound for the number
of change points is available.

Indeed, let us now work in the standard formulation of least squares total variation (LS-TV)
instead of its LASSO counterpart, and write model III.1 as

Y
______]

______[

Y
t

= uı

t

+ Á
t

,

uı

t

= µı

k

, tı

k≠1

Æ t Æ tı

k

≠ 1,

k = 1, ..., Kı + 1,

t = 1, ..., n,

(III.5)
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The vector uı(⁄
n

) =

Q

ccca

uı

1

(⁄
n

)
...

uı

n

(⁄
n

)

R

dddb can be estimated by using a criteria based on total varia-

tion penalty as following:

û(⁄
n

) =

Q

ccca

û
1

(⁄
n

)
...

û
n

(⁄
n

)

R

dddb = arg min
uœRn

;
||Y n ≠ u||2

n

+ ⁄
n

n≠1ÿ

i=1

|u
i+1

≠ u
i

|
<

(III.6)

The following proposition gives the rate of convergence of û(⁄
n

) when an upper bound for the
number of change points is known and equal to K

max

.

Proposition 1.2 Consider Y
1

, ..., Y
n

a set of observations following the model described in
III.5 where the Án

1

, ..., Án

n

are iid zero mean Gaussian variables with finite variance equal to
‡2 > 0. Assume also that û(⁄

n

) defined in III.6 belongs to a set of dimension at most K
max

≠1.
Then, for all n Ø 1, A œ (0, 1) and B > 0, if ⁄

n

= ‡(A
Ô

B

2

(K
max

log n) 1
2 n≠ 3

2 ≠‡(2K
max

+1) 1
2 n≠ 3

2 ,

P
3

Îû ≠ uıÎ
n

Ø ‡(BK
max

log n

n
) 1

2

4
Æ K

max

n{1≠ B(1≠A)2
8 }K

max . (III.7)

Proof. For notational simplicity, we shall remove the dependence of û in ⁄
n

. By definition
ofû as a minimizer of the criterion III.6, we get:

ÎY n ≠ ûÎ2

n

+ ⁄
n

n≠1ÿ

i=1

|û
i+1

≠ û
i

| Æ ÎY n ≠ uıÎ2

n

+ ⁄
n

n≠1ÿ

i=1

|uı

i+1

≠ uı

i

|.

Using Model III.5, the previous inequality can be rewritten as follows:

Îû ≠ uıÎ2

n

Æ 2n⁄
n

Îû ≠ uıÎ2

n

+ 2
n

ÿ

i=1

Á
n

(û
i

≠ uı

i

).

Using the Cauchy Schwarz inequality, we obtain

Îû ≠ uıÎ2

n

Æ 2n⁄
n

Îû ≠ uıÎ2

n

+ 2
n

ÿ

i=1

Á
n

(û
i

≠ uı

i

).

Thus, defining G()̇ fro v œ Rn by

G(v) :=

3 ÿ

i=1

Á
i

(v
i

≠ uı

i

)
4

‡
Ô

nÎv ≠ uıÎ
n

.
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III.1 Estimation of the Means

We have
Îû ≠ uıÎ2

n

Æ 2n⁄
n

Îû ≠ uıÎ2

n

+ 2‡Ô
n

Îû ≠ uıÎ
n

G(û).

Let {S
K

}
1ÆKÆK

max

be the collection of linear spaces to which û may belong, S
K

denoting a
space of dimension K. Then, given that the number of sets of dimension K is bounded by nK ,

we obtain

P
3

Îû ≠ uıÎ
n

Ø –
n

4
Æ P

3
n⁄

n

+ ‡n≠ 1
2 G(û) Ø –

n

2

4

Æ
K

maxÿ

K=1

nKP
3

sup
vœS

K

G(v) Ø n
1
2 ‡≠1

–
n

2 ≠ n
3
2 ‡≠1⁄

n

4
. (III.8)

Using that, V ar(G(v)) = 1, for all v in Rn, we obtain by using an inequality due to
Cirelson,Ibragimov,and Sudakov in the same way as in the proof of theorem 1 in BirgÃ©
and Massart (2001), that for all “ > 0,

P
3

sup
vœS

K

G(v) Ø E[ sup
vœS

K

G(v)] Ø +“
4

Æ exp(≠“

2 ). (III.9)

Let us now find an upper bound for E[sup
vœS

K

G(v)]. Denoting by W the D≠dimensional space
to which v ≠ uı belongs and some orthogonal basis Â

1

, ..., Â
D

of W, we obtain

sup
vœS

K

G(v) Æ sup
wœW

nÿ

i=1

Á
i

w
i

‡
Ô

nÎwÎ
n

= sup
–œRD

nÿ

i=1

Á
i

1 Dÿ

j=1

–
j

Â
j,i

2

‡
Ô

nÎ
Dÿ

j=1

–
j

Â
j,i

Î
n

= sup
–œRD

nÿ

i=1

Á
i

1 Dÿ

j=1

–
j

Â
j,i

2

‡
Ô

n
1 Dÿ

j=1

–2

j

2 1
2

.
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III.1 Estimation of the Means

Using the Cauchy Schwarz inequality, we derive

sup
vœS

K

G(v) Æ sup
–œRD

nÿ

i=1

Á
i

1 Dÿ

j=1

–
j

Â
j,i

2

‡
Ô

n
1 Dÿ

j=1

–2

j

2 1
2

(III.10)

Æ
1
‡2n

2≠ 1
2

Y
]

[

Dÿ

j=1

Q

a
nÿ

i=1

Á
i

Â
j,i

R

b
2

Z
^

\

1
2

. (III.11)

By the concavity of the square-root function and by using that D Æ K
max

+Kı+1 = 2K
max

+1,

we get
E

5
sup

vœS

K

G(v)
6

Æ (2K
max

+ 1) 1
2 . (III.12)

Using III.8, III.9, and III.12 with “ = n
1
2 ‡≠1

–

n

2

≠ n
3
2 ‡≠1 ◊ ⁄

n

≠ (2K
max

+ 1) 1
2 , we have

P
3

Îû ≠ uıÎ
n

Ø –
n

4
Æ K

max

exp
Y
]

[K
max

log n ≠ 1
2

Q

an
1
2 –

n

2‡
≠ n

3
2 ‡≠1⁄

n

≠ (2K
max

+ 1) 1
2

R

b
2

Z
^

\,

which is valid only if “ = n

1
2

–

n

2‡

≠ n
3
2 ‡≠1⁄

n

≠ (2K
max

+ 1) 1
2 is positive. Hence, writing fro a

constant A in (0, 1),

n
3
2 ‡≠1⁄

n

+ (2K
max

+ 1) 1
2 = A

n
1
2 –

n

2‡
.

It yields,

P
3

Îû ≠ uıÎ
n

Ø –
n

4
Æ K

max

exp
Y
]

[K
max

log n ≠ (1 ≠ A)2

8
n–2

n

‡2

Z
^

\.

Therefore, if –
n

= (B‡2K
max

log n

n

) 1
2 , we obtain the expected result.

The rate of convergence that we obtain for the estimation of the means is almost optimal up
to a logarithmic factor since the optimal rate derived by Yao and Au(1989)is O(n≠ 1

2 ).

Let us now study the consistency in terms of change-point estimation, which is more of
interest in this article. Again, we shall see that the LASSO formulation is less relevant than
the standard formulation for establishing the change-point estimation consistency.
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III.2 Estimation of the Change-Point Locations

2 Estimation of the Change-Point Locations
In this section, we aim at estimating the change-point locations from the observations

(Y
1

, ..., Y
n

) satisfying Model III.2. The change-point estimates that we propose to study are
obtained from the —̂

j

(⁄
n

) is satisfying the criterion III.4 as follows. Let us define the set of
active variables by

Ŝ(⁄
n

) := {j œ {1, ..., n} : —̂
j

(⁄
n

) ”= 0}.

Moreover, we define the change-point estimators by t̂
j

(⁄
n

) satisfying

Ŝ(⁄
n

) =
;

t̂
1

(⁄
n

), ..., t̂| ˆ

S(⁄

n

)|(⁄n

)
<

,

where
t̂
1

(⁄
n

) < ... < t̂| ˆ

S(⁄

n

)|(⁄n

),

|Ŝ(⁄
n

)| denoting the cardinal of the set Ŝ(⁄
n

).
With such a reformulation of the change point in the mean problem, the change-point estimates
can be seen as Lasso-type estimates in a sparse framework.

Let us now detail the assumptions under which the becoming theoretical results in the sequel
are established. Define

Iı

min

= min
1ÆkÆK

ı

|tı

k+1

≠ tı

k

|, Jı

min

= min
1ÆkÆK

ı

|µı

k+1

≠ µı

k

|.

We impose the following assumptions.

Assumption 1: The Á
1

, ..., Á
n

are iid zero-mean random variables with Var[Á
1

] = ‡2 satisfying:
there exisits a positive constant — such for all v œ R,

E[exp(vÁ
1

)] Æ exp(—v2).

Assumption 2: The sequence {”
n

}
nØ1

is a nonincreasing and positive sequence tending to
zero as n tends to infinity and satisfying

n”
n

(Jı

min

)2

log n
æ Œ, as n æ Œ.
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Assumption 3: The change points tı

1

, ..., tı

K

ı

satisfy

n”
n

Æ Iı

min

, for all n Ø 1.

Assumption 4: The sequence of regularization parameters {⁄
n

}
nØ1

is such that

n⁄
n

n”
n

Jı

min

æ 0, as n æ Œ.

We first state a lemma arising from the Karush Kuhn Tucker (KKT) conditions of the
optimization problem stated in III.4 which will be useful in the proof of the consistency of the
procedure in the sequel.

Lemma 2.1 Consider Y
1

, ..., Y
n

a set of observations following the Model(2). Then, the change-
points estimators (t̂

1

(⁄
n

), ..., t̂
n

(⁄
n

)) and (û
1

(⁄
n

), ..., û
n

(⁄
n

))€ defined by û
i

(⁄
n

) = (X
n

—̂n)
i

,

where X
n

is a n ◊ n matrix nonzero elements equal to one and the(—̂n)
1ÆiÆn

are obtained by...,
satisfy

nÿ

i=

ˆ

t

¸

(⁄

n

)

Y
i

≠
nÿ

i=

ˆ

t

l

(⁄

n

)

û
i

= n⁄
n

2 –̂
¸

, ’¸ = 1, ..., |Ŝ(⁄
n

)|. (III.13)

and ------

nÿ

i=j

Y
i

≠
nÿ

i=j

û
i

------
Æ n⁄

n

2 , ’j = 1, ..., n. (III.14)

Using the convention, Y
]

[
–̂

¸

= +1, û
ˆ

t

¸

(⁄

n

)

> û
ˆ

t

¸

(⁄

n

)≠1

;
–̂

¸

= ≠1, otherwise.

The vector û(⁄
n

) = (û
1

(⁄
n

), ..., û
n

(⁄
n

))€ has the following additional property:
Y
]

[
û

t

(⁄
n

) = µ̂
k

, t̂
k≠1

(⁄
n

) Æ t Æ t̂
k

(⁄
n

) ≠ 1,

k = 1, ..., |Ŝ(⁄
n

)| + 1.
(III.15)

Proof. A necessary and su�cient condition for a vector —̂ in Rn to minimize the function �
defined by

�(—) :=
nÿ

i=1

(Y
i

≠ (X
n

—)
i

)2 + n⁄
n

nÿ

i=1

|—
i

|,

is that the zero vector in Rn belongs to the subdi�erential of �(—) at the point —̂, that is, the
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following KKT Optimality conditions
Y
__]

__[

3
X€

n

1
Y

n

≠ X
n

—̂
24

j

= n⁄

n

2

sign(—̂
j

), if —̂
j

”= 0,
----(X€

n

1
Y

n

≠ X
n

—̂
24

j

---- Æ n⁄

n

2

sign(—̂
j

), if —̂
j

= 0.

Using that (X€
n

Y
n

)
j

= q
n

k=j

Y
k

and that (X€
n

û)
j

= q
n

k=j

û
k

, since X
n

is a n◊n lower triangular
matrix having all its nonzero elements equal to one, we obtain the expected result.

Now, we state a lemma which allows us to control the supremum of the average of the noise
and which will also be useful for proving the consistency of our estimation criterion.

Lemma 2.2 Let {Á
i

}
1ÆiÆn

be a sequence of random variables satisfying Assumption 1. If
{v

n

}
nØ1

and {x
n

}
nØ1

are two positive sequence such that v

n

x

2
n

log n

æ Œ as n æ Œ, then

P
Q
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1Ær

n

<s

n

Æn; |r
n

≠s

n

|Øv

n

------
(s

n

≠ r
n

)≠1

s

n

≠1ÿ

i=r

n

Á
i

------
Ø x

n

R

b æ 0, as n æ Œ. (III.16)

Proof. In the remainder, for any sequence of random variables, say, Z
1

, ..., Z
n

, we shall use
the following notation:

Z(r; s) :=
sÿ

i=r

Z
i

for any 1 Æ r < s Æ n. (III.17)

Using the notation introduced in III.17, we have

P
Q
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n

Æn; |r
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≠s

n

|Øv

n

------
Á(r
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n

R

b Æ
ÿ

1Ær
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Æn; |r
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|Øv

n

P

Q

a

------
Á(r

n
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n

≠ 1)
(s

n

≠ r
n

)

------
Ø x

n

R

b.

Using Assumption 1, it yields that for all” > 0,

P
Q

aÁ(r
n

; s
n

≠ 1)
(s

n

≠ r
n

) Ø x
n

R

b Æ exp
;

≠ ”(s
n

≠ r
n

)x
n

<3
E[exp(”Á]

4{
s

n

≠ r
n

}

Æ exp
;

≠ ”(s
n

≠ r
n

)x
n

+ —”2(s
n

≠ r
n

)
<

.
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Since the sharpest bound holds for ” = x

n

2—

, we get

P
Q

aÁ(r
n
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n

≠ 1)
(s

n

≠ r
n

) Ø x
n

R

b Æ exp
;

≠ x2

n

(s
n

≠ r
n

)
4—

<
.

Since the same bound is valid when Á
i

is replaced by ≠Á
i

, we have that

P

Q
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Á(r

n

; s
n

≠ 1)
(s

n

≠ r
n

)
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Ø x

n

R
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n
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n
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<
.

Therefore, it yields that

P
Q
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<s

n

Æn; |r
n
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n
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Á(r
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≠ r
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)
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n
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b Æ 2 exp
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n

(s
n

≠ r
n

)
4—

<
,

which completes the proof.

Proposition 2.1 Let Y
1

, ..., Y
n

be a set of observations satisfying Model III.1 then under
the Assumptions 1 to 4, the change-points estimators {t̂

1

(⁄
n

), ..., t̂| ˆ

S(⁄

n

)|(⁄n

)}
nØ1

satisfy, if
|Ŝ(⁄

n

)| = Kı with probability tending to one:

P
3

max
1ÆkÆK

ı

|t̂
k

≠ tı

k

| Æ n”
n

4
æ 1, n æ Œ. (III.18)

Proof. Since
P( max

1ÆkÆK

ı

|t̂
k

≠ tı

k

| > n”
n

) Æ
K

ıÿ

k=1

P (|t̂
k

≠ tı

k

| > n”
n

),

it su�ces to prove that for all k = 1, ..., Kı,
Y
]

[
P(A

n,k

) æ 0,

where A
n,k

:= {|t̂
k

≠ tı

k

| Ø n”
n

)}.

Defining the set C
n

by
C

n

:=
;

max
1ÆkÆK

ı

|t̂
k

≠ tı

k

| <
Iı

min

2

<
. (III.19)

Hence, it is enough to prove, simultaneously, that
Y
]

[
P(A

n,k

fl C
n

) æ 0, n æ Œ,

P(A
n,k

fl Cc
n

) æ 0, n æ Œ.
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Note that (III.19) implies that

tı

k≠1

< t̂
k

< tı

k+1

, for all k = 1, ..., Kı. (III.20)

Let us consider the first case where t̂
k

Æ tı

k

.

We begin by proving the first statement, i.e., P(A
n,k

fl C
n

) æ 0, as n æ Œ.

Applying refeq : III12 in Lemma 2.1 (KKT) with j = tı

k

and III.14 in Lemma 2.1 with ¸ = k

gives, respectively, ------
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Using the additional property of the û
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Hence, by using the Model(2),
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Therefore on C
n

fl {t̂
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} we have
----(t̂k

≠ tı

k

)(µı

k+1

≠ µı

k

) + Á(t̂
k

; tı

k

≠ 1) + (t̂
k

≠ tı

k

)(µ̂
k+1

≠ µı

k+1

)
---- Æ n⁄

n

.

Defining the event

C
n,k

:=
----(t̂k

≠ tı

k

)(µı

k+1

≠ µı

k

) + Á(t̂
k

; tı

k

≠ 1) + (t̂
k

≠ tı

k

)(µ̂
k+1

≠ µı

k+1

)
---- Æ n⁄

n

.

It follows that
C

n

fl {t̂
k

Æ tı

k

} µ C
n,k

,

also
A

n,k

fl C
n

fl {t̂
k

Æ tı

k

} = A
n,k

fl C
n

fl {t̂
k

Æ tı

k

} fl C
n,k

.

Therefore,

P(A
n,k

fl C
n

) = P(
----(t̂k

≠ tı

k

)(µı

k+1

≠ µı

k

) + Á(t̂
k

; tı

k

≠ 1)

+(t̂
k

≠ tı

k

)(µ̂
k+1

≠ µı

k+1

)
---- Æ n⁄

n

fl A
n,k

fl C
n

fl {t̂
k

Æ tı

k

})

Æ P({n⁄
n

n”
n

Ø |µı

k+1

≠ µı

k

|
3 } fl {t̂

k

Æ tı

k

})

+P({|µ̂
k+1

≠ µı

k+1

| Ø |µı

k+1

≠ µı

k

|
3 } fl C

n

)

+P({|Á(t̂
k

; tı

k

≠ 1)
tı

k

≠ t̂
k

| Ø |µı

k+1

≠ µı

k

|
3 })

:= P(A
n,k,1

) + P(A
n,k,2

) + P(A
n,k,3

)

By Assumption 4, n⁄

n

n”

n

J

ı

min

< 1

3

, for n large enough, leading to P(A
n,k,1

) æ 0 as n æ Œ. By
lemma 1.2.2 with x

n

= J

ı

min

3

, v
n

= n”
n

and Assumption 2, P(A
n,k,3

) æ 0 as n æ Œ.

Let us now address P(A
n,k,2

). Using Lemma 2.1 (KKT) with j = t
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Since we are in the event C
n
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)

2

log(n)

æ
Œ, as n tends to infinity. The last two conditions hold thanks to Assumptions 2, 3 and 4.
Since the proof in the case t̂

k

Ø tı

k

follows from the similar reasoning, we have proved that
P(A
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fl C
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) æ 0, as n tends to infinity.

We now prove that P(A
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n

) æ 0. Recall that by definition of c
n

given in (1.7),
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We split P(A
n,k
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n

) in three terms as following

P(A
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fl Cc
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n
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n
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n,k

fl D(r)

n
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where

D(l)

n
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p
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.

Let us first focus on P(A
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n

) and consider the case where t̂
k

Æ tı

k

, since the other case
can be addressed in a similar way.
Note that
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where Y
___]

___[

B
p,q

:= {t̂
p

≠ tı

q

Ø I

ı

min

2

},
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Let us now prove that the first term in the right hand side of (1.9) tends to zero as n tends to
infinity , the argumetns for adressing the other terms being similar.

Using III.13 and III.14 in Lemma 2.1 with j = tı

k

and ¸ = k, on the hand and III.14 in
Lemma 2.1 with j = tı

k

and III.13 in Lemma 2.1 with ¸ = k + 1 on the other hand, we obtain,
respectively:

|t̂
k

≠ tı

k

||µ̂
k+1

≠ µı

k

| Æ n⁄
n

+ |Á(t̂
k

; tı

k

≠ 1)|, (III.22)

and
|t̂

k+1

≠ tı

k

||µ̂
k+1

≠ µı

k+1

| Æ n⁄
n

+ |Á(tı

k

; t̂
k+1

≠ 1)|. (III.23)

In the one hand, we have
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and in the other hand
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By Assumptions 2, 3 and 4, P(A
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fl B
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) æ 0, as n tends to infinity, which
concludes that P(A
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Let us now focus on P(A
n,k
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). The latter probability be upper bounded by
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Straightforward,
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Consider one term of the sum in the right-hand side of refeq : III16 . Using III.22 and III.23

37



III.2 Estimation of the Change-Point Locations

with k = m, we obtain
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Let us now consider the last term in the right hand of III.24. By using the observations III.22
and III.23 with k = Kı leads to
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which gives
P(D

n

(l)) æ 0, as n æ Œ.

In a similar way, we can prove that P(D
n

(r)) æ 0, as n æ Œ which yields that P(A
n,k

flCc
n

) æ 0
and concludes the proof.

Under the assumptions of Proposition 2.1, the ·̂
k

defined for all k œ {1, ..., Kı} by t̂
k

= [n·̂
k

]
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are consistent estimators of the · ı

k

defined by tı

k

= [n· ı
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], for all k œ {1, ..., Kı} with the rate
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. With this choice
of parameters, the authors obtain an almost optimal rate for the estimation of the · ı
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(up to a
logarithmic factor) since the optimal rate is of order 1

n

according to Yao and Au(1989).

3 Estimation of the change-Point’s Number
In Proposition 2.1, the number of estimated change points is assumed to be equal to the

number of change points. since this information is not in general available, the authors propose
to evaluate the distance between the set T̂
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Proof. By Lemma 2 of Meinshausen and Yu (2009), it yields with probability tending to one
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, (III.27)

where C is a positive constant equal to ‡2 + Kı2Jı2
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, It is enough to prove that
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Kı Æ |Ŝ(⁄)| Æ C

n

⁄2

n

<4
æ 0, as n æ Œ.

We observe that

P
3;

E(T̂
n,| ˆ

S(⁄

n

)|ÎT ı

n

) Ø n”
n

< ‹ ;
Kı Æ C

n

⁄2

n

<4
Æ P

3
E(T̂

n,K

ı|ÎT ı

n

) Ø n”
n

4

+
C

n

⁄

2
nÿ

K>K

ı

P
3
E(T̂

n,K

ı|ÎT ı

n

) Ø n”
n

4
. (III.28)

The first term of the right-hand side of III.28 tends to zero as n tends to infinity since it is
upper bounded by P
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4
which tends to zero by Proposition 2.1. Let

us now focus on the second term on the right-hand side of III.28. Note that
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Therefore, we may upper bound P
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Note that with ”
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4 Least Squares-Total Variation with LARS
In this section, we detail the process of the LARS implemented to the method of LS-TV. For
the sake of simplicity, one can shall describe here the algorithm where he looks for K

max

change
points, K

max

being a known upper bound on the true number of change points
Suppose that we have performed k ≠ 1 iterations in the algorithm, then the current set
of estimated change points, that is, the active set in the variable selection framework, is
T̂
n,k≠1

=
Ó
t̂
1

, ..., t̂
k≠1

Ô
and the current set of estimated segment levels is

Ó
û

1

(k≠1), ..., û
n

(k≠1)
Ô
.

We are now describing the computational requirements of the kth iteration of the algorithm.
First, we look to the next change point t̂

k

to add to T̂
n,k≠1

yielding the largest discrepancy
with the true signal. This requires, given

Ó
û

1

(k ≠ 1), ..., û
n

(k ≠ 1)
Ô
, the computation of the

n cumulative sums
;
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û
i

(k ≠ 1)
<
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. These cumulative sums may actually be computed

in O(n) operations in time, using the simple recursion
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i=j

û
i

(k ≠ 1) =
nÿ

i=j+1

û
i

(k) + û
j

(k). Be-

sides, to be included in the current set of change point estimates (active set), we need to locate
the new change point estimate with regard to the other change-point estimates, which is for-
mally equivalent to sort the set of observations. Therefore, the Change-Point Addition step has
O(n+ log(n)) time complexity.
Second, we have to compute the descent direction, which involves the multiplication of the in-
verse of k◊ k-matrix by a k-long vector. Indeed, X

k

is a matrix which consists of the columns
of X indexed by the element of T̂

n,k

and 1
k

denotes the vector of dimension k with each compo-
nent equal to one. Given the current set of change-points T̂

n,k

, the inverse maybe computed in
O(k2) operations, since the entries of the inverse matrix of size k◊k are available in close form
beforehand. Then, the multiplication of k◊k-inverse by 1

k

is computed in O(k2) operations. If
k < K

max

, then the time complexity of Descent Direction Computation step is upper bounded
by O(K2

max

).
Third, we search for the descent step. For similar reasons as for the first step, the Descent Step
Search step may be performed in linear time O(n) time complexity. Indeed, again, this step
involves the computation of n cumulative sums, which may be computed recursively.
Fourth, we check the zero crossing of the coe�cients to exactly track the regularization path of
the LASSO. In this step, –

j

= sign(û
j+1

(k)≠ û
j

(k)). Again, all computations involved in this
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step hinge on cumulative sums as previously in the first step, and therefore may be performed
in O(n) time complexity. Note that the maximum number of iterations N needed in practice to
decrease “̂ to a small enough value to satisfy “̂ = Â“ is unknown in general, and no theoretically
grounded upper bound on N was provided in the literature so far.
Finally, the implementation of LS-TV based upon the LAR/LASSO algorithm runs in at most
O(K3

max

+K
max

n log(n)) in time.

LS-TV with LAR/LASSO
Initialization, k = 0.
(a) Set T̂

n,0

= ÿ.
(b) Set û

i

(0) = 0, for all i = 1, ..., n.
While k < K
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.
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(c) Descent Step Search:
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(d) Zero-Crossing Check:
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