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System Model

A well accepted model for the node distribution in wireless
networks is the homogeneous Poisson point process (PPP) of
intensity λ. Without loss of generality, we can assume that the
base stations (BS) are located at the point of a stationary,
homogeneous PPP Φ := {Xn, n ∈ N} of intensity λ BS km2 on
the plane R2.

Mokhtar Zahdi Alaya PAN & Shad. Model. INRIA-PARIS 2011



Description of the Model
Mathematical Results

System Model
Path-loss factor
Interference factor
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For a given BS X ∈ Φ and give a location y ∈ R2 on the plane
we denote by PX(y) the time average, i.e. averaged out over the
fading propagation-loss between BS X and the Location y. In
what following we will always assume that

PX(y) =
SX(y)

l(|X − y|)
(1)

LX(y) =
l(|X − y|)
SX(y)

. (2)

where l(.) is a non-decreasing, deterministic function of the
distance between an emitter and a receiver, and SX(.) is a
random shadowing field related to the BS X.
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System Model

Regarding the distribution of the marks (shadowing fields) of
this process, they are assumed to have the same distribution for
all y ∈ R2.
For the deterministic path-loss function l(.) the following
particular model is often used and will be our default hypothesis
in this thesis :

[H]



l(r) = (Kr)β, where K > 0 and β > 2 are some constants.
β is called the path-loss exponent (PLE),
For all y,SX(y) is log-normal random variable variable,S can be expressed as
S
D
= em+σZ ,

where Z is a standard Gaussian random varaible (with mean 0 and variance 1 ).
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Path-loss factor

In what follows we will assume that each given location y ∈ R2

is served by the BS X∗y ∈ Φ with respect to which it has the
highest path-loss PX∗y (y) (so, in other words, the strongest
received signal, given all BS emit with the same power),i.e., such
that

PX∗y (y) = max
n∈N

SXn(y)

l(|Xn − y|)
, (3)
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Path-loss factor

Consequently we have,

PX∗y (y) ≥ PX(y), ∀X ∈ Φ.

We notice that PX(y) is the path-loss experienced by a user
located at y with respect to its serving BS. Obviously it
determines the quality of the services of this user. In this
context we will call path-loss factor of a user y and denote by
PX∗y (y). It depends on the location y but also on the path-loss
conditions of this location with respect to all BS in the network
P (y) = P (y,Φ). Path-loss factor PX∗y (y) is typically not enough
to determine the qualities of services of a given user.
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Interference factor

In wireless networks, interference is one of the central elements
in system design, since network performance is often limited by
competition of users for common resources. For a given location
y ∈ R2 the interference factor f(y) is defined as

f(y) = f(y, Φ̃) =
∑

X∈Φ, X 6=X∗y

PX(y)

PX∗y (y)
, (4)

provided X∗y is well defined. Indeed, f(y) = f̃(y)− 1 where

f̃(y) =
∑
X∈Φ

P (y)

PX(y)
.
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Interference factor

Without loss of generality, since the network is homogenous, the
interference measure at the origin is representative of the
interference seen by all the other receiver nodes in the network
is given by,

f(o) =
∑

X∈Φ, X 6=X∗o

PX(o)

PX∗o (o)
= f̃(o)− 1 =

1

PX∗

∑
Xn∈Φ

SXn
l(|Xn|)

.
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Interference factor

The interference power seen by the receiver at the origin can be
viewed as a random field or, more specially, as a shot noise
process described as

I ≡ I(o) :=
∑
n∈N

Sn
l(|Xn|)

. (5)

If we define

L ≡ L(o) := min
n∈N

LXn(o), (6)

then we can express the interference factor in terms of L and
the shot noise I as following

f = I × L− 1. (7)
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Invariance of the model with respect to the density of the
Shadowing

Taking into account the previous hypothesis [H] in chapter 2
that we have assumed to be satisfied by our model. we are going
to show that the distribution of the interference factor f does
not depend on the intensity λ of the Poisson point process Φ.
Let us now construct a new point process Φ′ = {Yn, n ∈ N} of
intensity 1 by taking Xn = Yn√

λ
. Indeed using the new expression

of PX∗ , which is

PX∗ = max
n

SXn
l(| Yn√

λ
|)

= λ
β
2 max

n

SXn
l(|Yn|)

.

In that follows, the expression of the interference factor is given
by

f̃(0) =
∑
X∈Φ

PX
PX∗

=
∑
Y ∈Φ′

P Y√
λ

P Y√
λ

∗

=
(
λ
β
2 max

n

SXn
l(|Yn|)

)−1 ∑
Yn∈Φ′

λ
β
2
SXn
l(|Yn|)

=
(

max
n

SXn
l(|Yn|)

)−1 ∑
Yn∈Φ′

SXn
l(|Yn|)

.
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Analysis of the Path-loss factor

Theorem
Consider infinite Poisson process Φ model of the BS, with
shadowing whose marginal distribution has finite moment of
order 2

β and for any deterministic path-loss function
0 < l(r) <∞. Then, the distribution of PX∗ has the following
form

P
(
PX∗ ≤ r

)
= exp

(
− λ

∫
R2

(
1− FSX

(
rl(|X|)

))
dX

)
. (8)
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Analysis of the Path-loss factor

Remark
Taking into account the hypothesis [H] of the previous chapter,
we are going to show that the distribution function of PX∗
depends only on the moment E[S

2
β ] of the shadowing.

Mokhtar Zahdi Alaya PAN & Shad. Model. INRIA-PARIS 2011



Description of the Model
Mathematical Results

Analysis of the Path-loss factor
Analysis of the Interference factor
Path-loss Exponent Estimation

Analysis of the Path-loss factor

Example
Assume an infinite Poisson model Φ of BS locations satisfying
the hypothesis [H] . Going back to remak (3.2.1) we can get an
explicit expression of the probability distribution function of the
path-loss, provided E[S

2
β ] <∞, giving as following

P
(
PX∗ ≤ r

)
= exp

(
− λπ

K2r
2
β

e
2σ2

β2
+ 2m

β

)
. (9)

This is the Fréchet distribution with shape 2
β and scale

parameter
(
λπ
K2 e

2 r2

β2
+ 2m

β

)β
2
.
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Analysis of the Interference factor

Let us consider the point process Ψ := { l(|Xn|)SXn
, Xn ∈ Φ}, on R+

as we see Ψ was constructed from the first Poisson point process
Φ. The following lemma shows the Poisson criteria of Ψ.

Lemma
Ψ is a non-homogeneous Poisson point process with intensity
measure given by

ΛΨ([0, t]) =
λπt

2
β

K2
E[S

2
β ]. (10)
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Analysis of the Interference factor

Remark
The distribution of any functional of Ψ does not depend on the
distribution of the shadowing S but only on the moment E[S

2
β ].

we observe in the previous section that the path-loss factor P ∗X
and the interference factor f̃ are some of that functionals.
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Analysis of the Interference factor

Now we derive a general expression for the mean interference in
networks whose nodes are distributed as a stationary point
process Φ = {X1, X2, ...} ⊂ R2 of intensity λ.

Proposition
In the Poisson network with deterministic path-loss function,
the distribution of the interference factor f(0) does not depend
on the marginal distribution of shadowing field SX(.) provided
E[S

2
β ] <∞. Moreover, we have E[f(0)] = 2

β−2 .
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Analysis of the Interference factor

Now we derive a general expression for the mean interference in
networks whose nodes are distributed as a stationary point
process Φ = {X1, X2, ...} ⊂ R2 of intensity λ.

Remark
we have seen that from the first section of this chapter that the
interference factor f does not depend on the intensity measure λ
of the Poisson point process Φ. Now using this observation and
taking into account E[S

2
β ] <∞ yield that the distribution of

interference factor also does not depend not only on the
distribution of the shadowing but also on the moment E[S

2
β ] of

the shadowing. to see this from remark (), the intensity measure

of the process Ψ is ΛΨ([0, t]) = λπt
2
β

K2 E[S
2
β ], we can consider a

new intensity λ′ = λ

E[S
2
β ]
. Henceforth, the new intensity measure

is Λ′Ψ([0, t]) = λπ
K2 .Mokhtar Zahdi Alaya PAN & Shad. Model. INRIA-PARIS 2011
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Distribution function of the interference factor f

T

he Laplace transform of the shot noise I =
∑
n∈N

Sn
l(|Xn|)

is given

by

LI = exp
(
− 2πλ

∫ ∞
0

(
1− LS(

t

l(r)

)
rdr
)
,

where LS(t) = E[e−t S ].
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Distribution function of the interference factor f

Corollary
The Laplace functional LI(t) of the shot noise I verifies,

LI(t) = exp
(
− 2πλ t

2
β

βK2
Γ(− 2

β
)E[S

2
β ]
)
. (11)

Mokhtar Zahdi Alaya PAN & Shad. Model. INRIA-PARIS 2011



Description of the Model
Mathematical Results

Analysis of the Path-loss factor
Analysis of the Interference factor
Path-loss Exponent Estimation

Distribution function of the interference factor f

Proposition (Karray 2011)
The Laplace functional of the interference factor f is given by

E[e−zf ] =
1

e−z + z
2
β

(
Γ(1− 2

β )− Γ(1− 2
β , z)

) . (12)

where Γ(a) =
∫∞

0 ta−1e−adt is the gamma function and
Γ(a, x) =

∫∞
x ta−1e−adt is the upper incomplete gamma

function.
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Joint distribution path-loss interference factors

(Karray 2011)
The joint distribution of the path-loss interference factor is
given by

E
[
1{PX∗ ≤ u} e−zI

]
= exp

(
− 2πλ

β K2
E[S

2
β ] z

2
β

[
Γ(− 2

β
)+Γ(− 2

β
, u z)

])
.

(13)
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Corollary
The path-loss and the interference factors are not independent
random variables.

Mokhtar Zahdi Alaya PAN & Shad. Model. INRIA-PARIS 2011



Description of the Model
Mathematical Results

Analysis of the Path-loss factor
Analysis of the Interference factor
Path-loss Exponent Estimation

Path-loss Exponent Estimation

In wireless channels, the path loss exponent (PLE) has a strong
impact on the quality of the links, and hence, it needs to be
accurately estimated for the efficient design and operation of
wireless networks. Consider our model with the hypothesis [H] ,
from theorem equation (3.2) we have the probability
distribution function of the path-loss factor PX∗ as following.

P
(
PX∗ ≤ r

)
= exp

(
− λπ

K2r
2
β
e

2σ2

β2
+ 2m

β

)
.
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Path-loss Exponent Estimation

log
(
− log

[
P
(
PX∗ ≤ et

)])
= A t+B where,{

A = − 2
β

B =
[
log( λπ

K2 ) +
(

2σ2

β2 + 2m
β

)]
.
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Thank you.
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